Helpful Overleaf Feature. If you left double click at a place in the PDF file, then Overleaf indicates the corresponding place in the LaTeX file, making it easy to compare the PDF output to LaTex input.

How to write a proof.

Basically, we start our proof with \backslash begin $\{$ proof $\}$ and end our proof with \backslash end $\{$ proof $\}$. Then just put our proof between the \backslash begin $\{$ proof $\}$ and \backslash end\{proof $\}$. That's all. Recall in LaTex as soon as we write \backslash begin $\{$ proof $\}$, in order to compile we need to include the \backslash end\{proof $\}$ below the \backslash begin\{proof\}, In LaTex, whenever we begin something, we need to end that something before compiling. The below example is a slight modification to the proof of Theorem 1.8 on page 22.

Lemma POO. The product of two odd integers is an odd integer.
Proof. Let x and y be odd integers. We will show that $x \cdot y$ is an odd integer.
Since x and y are odd integers, by definition of odd integer, there exist $k_{x}, k_{y} \in \mathbb{Z}$ such that

$$
\begin{equation*}
x=2 k_{x}+1 \quad \text { and } \quad y=2 k_{y}+1 . \tag{1}
\end{equation*}
$$

By (1) and then algebra,

$$
\begin{align*}
x \cdot y & =\left(2 k_{x}+1\right)\left(2 k_{y}+1\right) \\
& =4 k_{x} k_{y}+2 k_{x}+2 k_{y}+1 \\
& =2\left(2 k_{x} k_{y}+k_{x}+k_{y}\right)+1 \tag{2}\\
& =2 q+1
\end{align*}
$$

where $q=2 k_{x} k_{y}+k_{x}+k_{y}$. Note $q \in \mathbb{Z}$ since $2, k_{x}, k_{y} \in \mathbb{Z}$ and the integers are closed under multiplication and addition. We have just shown

$$
\begin{equation*}
x \cdot y=2 q+1 \text { for some } q \in \mathbb{Z} \tag{3}
\end{equation*}
$$

Thus equation (3) shows that $x \cdot y$ is an odd integer by the definition of odd integer.
We have just shown that the product of two odd integers is an odd integer.
BTW. Below is a Know-Show Table for this theorem.

Know-Show Table			
$\begin{array}{\|c\|} \hline \text { optional } \\ \text { columns } \end{array}$		mandatory columns	
		Know	Reason
1	P	x and y are odd integers	Hypothesis
4	P1	There exists integers k_{x} and k_{y} such that $x=2 k_{x}+1$ and $y=2 k_{y}+1$	definition of odd integer
5	P2	$x y=\left(2 k_{x}+1\right)\left(2 k_{y}+1\right)$	substitution
6	P3	$x y=4 k_{x} k_{y}+2 k_{x}+2 k_{y}+1$	algebra
7	P4	$x y=2\left(2 k_{x} k_{y}+k_{x}+k_{y}\right)+1$	algebra
8	P5	$\left(2 k_{x} k_{y}+k_{x}+k_{y}\right)$ is an integer	closure properties of the integers
3	Q1	There exists an integer q such that $x y=2 q+1$.	use $q=\left(2 k_{x} k_{y}+k_{x}+k_{y}\right)$
2	Q	$x \cdot y$ is an odd integer.	definition of odd integer

Remember, the orderand step columns may vary.

