Delimiters are parenthesis-like symbols that enclose something, Examples: $\{, \}, (,), [,]$. Delimiters are used in describing sets. Our goal is to learn the basics about delimiters and sets.

Read "H	low to Use	e Latex Lessons'	' at LaTex	Lessons.
	Common	subsets of Real	Numbers	

Common subsets of the real numbers are: \mathbb{R} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and $\mathbb{R} \setminus \mathbb{Q}$. Enclosing mathy stuff between \$-signs puts the stuff into *math mode* (instead of the default *text mode*). You could of also expressed the list of subsets as: \mathbb{R} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and $\mathbb{R} \setminus \mathbb{Q}$. The PDF outputs look the same but the Latex inputs vary. Common mistakes are to try \mathbb{R} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and $\mathbb{R} \setminus \mathbb{Q}$ or to try \mathbb{R} , \mathbb{N} , \mathbb{Z} , \mathbb{Q} , and $\mathbb{R} \setminus \mathbb{Q}$. Compare the difference in the above 4 Latex inputs. We can also *display* (i.e., center) this list of sets as below

 $\mathbb{R}, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \text{ and } \mathbb{R} \setminus \mathbb{Q}.$

The equation environment automatically puts us into math mode so we do not need the \$ signs.

Delimiters:
$$\{, \}, (,), [,]$$

In LaTex, only the delimiters { and } need the backslash (i.e., \) before them. So it's easy to do $\mathbb{R} = (-\infty, \infty)$. The delimiters are a bit too short in (btw: can also display with a double dolar sign \$)

$$(\frac{1}{2},\frac{3}{4}]$$

so let's do

$$\left(\frac{1}{2}, \frac{3}{4}\right]$$
 or (using some newcommands I have set up for you) $\left(\frac{1}{2}, \frac{3}{4}\right]$

These newcommands I have set up for you are

- $\ \$ and $\ \$ for the left and right parentheses (and)
- \lb and \rb for the left and right bracket [and]
- \lc and \rc for the left and right curly { and }

Next, let's learn by just looking at some latex input for some subsets of \mathbb{R} .

$$\{0, \pm 2, \pm 3, \pm 4, \dots, \} = \{\dots, -4, -2, 0, 2, 4, \dots\}$$
(1)

$$\{2^n \in \mathbb{R} \colon n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, 64, \ldots\}$$
(2)

$$\left\{k^2 \in \mathbb{R} \colon k \in \mathbb{Z}\right\} = \{0, 1, 4, 9, 16, 25, 36, \ldots\}$$
(3)

$$\mathbb{Z} \setminus \mathbb{N} = \{ x \in \mathbb{R} \colon x \in \mathbb{Z} \text{ and } x \notin \mathbb{N} \} = \{ 0, -1, -2, -3, \ldots \}$$
(4)

$$\left\{\frac{a}{b} \in \mathbb{R} \colon a, b \in \mathbb{R} \text{ and } b \neq 0\right\}$$
(5)

$$\left(\sqrt{2}, \pi\right] = \left\{ x \in \mathbb{R} \colon \sqrt{2} < x \le \pi \right\}$$
(6)