Notes for Working Seminar:
On k-free values of irreducible polynomials
05/18/99

Halberstam & Roth (1951): For every € > 0 and = > zo(g), there is a k-free number in the interval (z,z +
FU/ (k)]

Nair (1976, 1979): He extended the approach to algebraic number fields.

Theorem (Nair, 1979): Let f(z) € Z[z] with f(z) irreducible and ged(f(m) : m € Z) = 1. Let n = deg f, and let
k be an integer > n + 1. There is a constant ¢ such that for z sufficiently large, there is an integer m € (z,z + cz?],
where § = n/(2k —n + 1), such that f(m) is k-free.

Theorem (Huxley & Nair for n > 2 in 1980, Trifonov for n =1 in 1995): One can take § = n/(2k —n + 2)
above.

Theorem (Filaseta, 1993): One can take § = n/(2k —n + r) above where r ~ v/2n.
Comment: Similar results can be obtained for £ < n but not too small compared to n (see the next theorem).

Theorem (Nair, 1976): Let f(z) € Z[z] with f(z) irreducible and ged(f(m) : m € Z) = 1. Let n = deg f, and let
k be an integer > (v/2 — £)n. Then there are infinitely many integers m such that f(m) is k-free.

Comment: Previous results were obtained by Nagel (for k¥ > n in 1922) and Erdé&s (for k£ > n — 1 in 1953). Nagel’s
result contained an asymptotic formula for the number of such m < x with f(m) being k-free; Erdés’ result did
not. Later Hooley (1967) established asymptotics for ¥ > n — 1. For small n, Hooley’s result is the best known.
Nair obtained his theorem above with asymptotics for the number of m < z with f(m) being k-free, improving on
Hooley’s result when n is sufficiently large.

Question 1: Can one use differences to prove Hooley’s result?

Question 2: Can the Swinnerton-Dyer approach be extended to number fields and, if so, what does it imply about
k-free values of polynomials?

Question 3: Is m* + 1 squarefree for infinitely many integers m?
Notation: f(z) € Z[x]
f(x) irreducible

ged(f(m) :meZ)=1
n = deg f

f(0)=0
R is the ring of integers in Q(0)

Basic Idea 1: Count m < x such that f(m) is not divisible by p* where p < elogx. The number of such m is

H (1 - piik))a: + o(x).

p<elogaz

Basic Idea 2: Let T = zy/logz. Find an upper bound for the number of m < x such that f(m) is divisible by p*



where elogz < p < T. Using that p(p*) is bounded for p large, the number of such m is
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Main Idea: Find an upper bound for P(z), the number of m < z such that f(m) is divisible by p* with p > 7.
Nair shows that there are Fq, ..., E, such that

P(z) < max
Ee{E,....En}

{u ER:|ul > T/ uky = E(m — 0) for some m € ZN[l,z],v € R, and u primary }‘
Here, u being “primary” means any two conjugates have the same order.

Comment: One should actually count pairs (u,v) above. The above is correct provided that we divide [1,z] into
subintervals of length H <« T*/™ and deal with the subintervals separately.

Notation: I C [1,z]
[I|<H
S is the set in the bound for P(z) above restricted to m € I
S(t)y={ueS:t'/" < |ul < (2t)'/"}
y=m' — 0 for somem’' €I

Classical Use of Differences: Observe that

E(m—-0) Ey (%)
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Consider appropriate forms Ps(u, ) and Q(u, @) in Z[u, a] of degree s such that

E(m1 — 9)

Uk PS(U,a) -

has small absolute value (in particular, < 1 so that H/|u[=* < 1 forcing us to restrict to H < t(¥=9)/"). Ideally,
we would like to conclude that since the expression above is an algebraic integer with absolute value < 1, it must be
Zero.

Difficulty: Algebraic integers (even from a fixed number field) can have arbitrarily small absolute value without
being equal to 0.

Solution: Apply o € Gal(Q(8)/Q) to the above (to obtain a conjugate of the expression). Using that u and v + «
are primary, the conjugate obtained will still have small absolute value (in particular, < 1). But some conjugate of
a non-zero algebraic integer MUST BE > 1. Hence, we can deduce the expression above is 0.

Comment: One then continues as in the classical Halberstam-Roth method.
Additional Difficulty: How does one count u € R with |u| < t'/7?

Solution: Write v = wjwy + - - - + upw,, where u; € Z and w1, ...,w, form an integral basis for R. For u € S(t), one
has each |u;| is < t'/™ (and some |u;| > t'/™). Consider the hypercube

{(u1y.. . up) uj € T, |uj| < t+/™ for each j}.

Divide it into sub-cubes with edge length £. One gets <« ((tl/”/é) + l)n such sub-cubes. One picks £ so that there
are < 1 different w that can lie in a sub-cube and S(t) (via the Halberstam-Roth method).



