Seminar Notes: On the irreducibility of a truncated binomial expansion

(joint work with Dmitrii V. Pasechnik)

Notation:

- n and k are positive integers with $k \le n-1$
- p and q are primes (to be chosen > k)
- a_j are integers having no prime factors > k (and, hence, non-zero)

•
$$P_{n,k}(x) = \sum_{j=0}^{k} \binom{n}{j} x^j$$
.

•
$$c_j = \frac{(-1)^{k-j}n(n-1)\cdots(n-j+1)(n-j-1)\cdots(n-k+1)(n-k)}{j!(k-j)!}$$

•
$$F_{n,k}(x) = \sum_{j=0}^{k} a_j c_j x^j$$

Main Results:

Theorem 1. Let N be a positive integer. For each integral pair (n,k) with $1 \le n \le N$ and $1 \le k \le n-2$, consider the set S(n,k) of all polynomials of the form $F_{n,k}(x)$. The number of such pairs (n,k) for which there exists a polynomial $f(x) \in S(n,k)$ that is reducible is $\ll N^{1.525}$.

Theorem 2. If there is a prime p > k that exactly divides n(n-k), then $F_{n,k}(x)$ is irreducible.

Theorem 3. For $k \geq 3$, there is an $n_0 = n_0(k)$ such that if $n \geq n_0$, then $F_{n,k}(x)$ is irreducible.

Important Identities:

•
$$\sum_{j=0}^{a} {b \choose j} (-1)^j = {b-1 \choose a} (-1)^a \quad \text{ for } 0 \le a \le b$$

•
$$P_{n,k}(x-1) = \sum_{i=0}^{k} \binom{n}{i} \binom{n-i-1}{k-i} (-1)^{k-i} x^i = \sum_{j=0}^{k} c_j x^j$$

The Lemmas (for Theorem 3):

Lemma 1. Let p be a prime > k and e a positive integer for which $\nu_p(n) = e$ or $\nu_p(n-k) = e$. Then each irreducible factor of f(x) has degree a multiple of $k/\gcd(k,e)$.

Lemma 2. Let n' be the largest divisor of n(n-k) that is relatively prime to k!. Write

$$n' = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r},$$

where the p_i denote distinct primes and the e_i are positive integers. Let

$$d = \gcd(k, e_1, e_2, \dots, e_r).$$

Then the degree of each irreducible factor of f(x) is a multiple of k/d.

Lemma 3. Let $f(x) = F_{n,k}(x)$. Let n'' be the largest divisor of (n-1)(n-k+1) relatively prime to k!. Suppose $\nu_p(n'') = e$ where p > k and $e \in \mathbb{Z}^+$. If f(x) is a product of two polynomials of degree k/2, then (k-1)|e.