
Notes for Seminar:
The Odd Covering Problem and Its Relatives, Part III

Lemma 6: Suppose f(x)xa+ 1 is divisible by Φm(x) for some positive integer m. Then f(x)xn+ 1
is divisible by Φm(x) if and only if n ≡ a (mod m).

Proof: Let F (x) = f(x)xn+ 1. If n ≡ a (mod m), then clearly F (ζm) = 0 so that F (x) is divisible
by Φm(x). If F (x) is divisible by Φm(x), the equality

0 = ζn−am

(
f(ζm)ζam + 1

)
− F (ζm) = ζn−am − 1

implies n ≡ a (mod m).

Comment: Note that if f(x)xn + 1 is divisible by g(x) for some irreducible g(x) ∈ Z[x] and for at
least two different nonnegative integers n, then g(x) = Φm(x) for some m.

Lemma 7: Let m be an integer > 1. Then Φm(1) =
{
p if m = pr for some r ∈ Z+

1 otherwise
.

Proof: Clearly, Φp(1) = p. If m = prk with k and r positive integers such that p - k, then Lemma 2
implies Φm(1) = Φpk(1p

r−1
) = Φpk(1). The lemma follows if k = 1. If k > 1, then applying Lemma

2 again we obtain Φm(1) = Φpk(1) = Φk(1p)/Φk(1) = 1.

Lemma 8: Let m and ` be integers with m ≥ 1 and ` ≥ 0. For α ∈ Q(ζm), let N(α) = NQ(ζm)/Q(α)
denote the norm of α. Then N

(
ζ`m − 1

)
is divisible by a prime p if and only if m/ gcd(`,m) is a

power of p.

Proof: Apply Lemma 7 and use that N
(
ζ`m − 1

)
= ±Φm/ gcd(`,m)(1)φ(m)/φ(m/ gcd(`,m)).

Comment: We only need the “only if” part of Lemma 8 which follows from N
(
ζ`m − 1

)
dividing a

power of Φm/ gcd(`,m)(1).

Main Lemma: Let f(x) ∈ Z[x], and suppose n is sufficiently large (depending on f). Then the
non-reciprocal part of f(x)xn + 1 is irreducible or identically ±1 unless one of the following holds:

(i) −f(x) is a pth power for some prime p dividing n.
(ii) f(x) is 4 times a 4th power and n is divisible by 4.

Proof of Theorem Assuming Main Lemma: We suppose (as we may) that f(0) 6= 0. Since
x2t + 1 = Φ2t+1(x) is irreducible for every t ∈ Z+, we deduce f(x) 6≡ 1. Let f̃(x) = xdeg ff(1/x).
Then each reciprocal factor g(x) of F (x) = f(x)xn + 1 divides

f(x)F̃ (x)− xdeg fF (x) = f(x)
(
xn+deg f + f̃(x)

)
− xdeg f

(
f(x)xn + 1

)
= f(x)f̃(x)− xdeg f .

In particular, there is a finite list of irreducible reciprocal factors that can divide f(x)xn + 1 as
n varies. Each reciprocal non-cyclotomic irreducible factor divides at most one polynomial of the
form f(x)xn + 1. By the Main Lemma, we deduce that there are Φm1(x), . . . ,Φmr (x) such that if
n is sufficiently large and both (i) and (ii) do not hold, then Φmj (x)|

(
f(x)xn + 1

)
for some j. Note

that (ii) does not hold since otherwise f(x)xn + 1 could not be divisible by a cycltomic polynomial
(if Φm(x) were a factor, then f(ζm)ζnm = −1, contradicting that the left side has even norm and
the right side has odd norm) so that f(x)xn + 1 is irreducible whenever 4 - n and n is sufficiently



large. We may suppose that there is an aj such that Φmj (x)|
(
f(x)xaj + 1

)
. Let P denote the set of

primes p for which f(x) is minus a pth power. We remove from consideration any mj divisible by
a p ∈ P (but abusing notation we keep the range of subscripts). Then Lemmas 5 and 6 imply that
the congruences

x ≡ 0 (mod p) for p ∈ P and x ≡ aj (mod mj) for j ∈ {1, 2, . . . , r}

cover the integers.

Claim: Suppose mj = ptm0 and mi = psm0, where p is prime, m0 is an integer > 1 such that
p - m0, and t and s are integers with t > s ≥ 0. Then aj ≡ ai (mod m0).

Take p = 2 in the Claim. We replace x ≡ aj (mod mj) and x ≡ ai (mod mi) with x ≡ aj (mod m0).
If for some j there is no i as above, we still replace x ≡ aj (mod mj) with x ≡ aj (mod m0). Then
we are left with a covering with moduli that are distinct odd numbers together with possibly powers
of 2. Observe that

∑∞
j=1 1/2j = 1 implies that there is an a ∈ Z and a k ∈ Z+ such that no integer

satifying x ≡ a (mod 2k) satisfies one of the congruences in our covering with moduli a power of 2.
Denote by x ≡ a′j (mod m′j) the congruences with m′j odd. Let u and v be integers such that

2ku+ v
(∏

m′j

)
= 1.

For any n ∈ Z, consider the number m = a + 2ku(n − a). Then m ≡ n (mod m′j) for every m′j
and m ≡ a (mod 2k). It follows that n ≡ m ≡ a′j (mod m′j) for some m′j . Therefore, every n ∈ Z
satisfies one of the congruences x ≡ a′j (mod m′j). So these congruences form an odd covering of
the integers.


