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Definitions and Notations:

e irreducibility will be over the integers

oif f(x) =Y ajzd, then| £

j=0

e f(z) = 2B S f(1/x)

e f(x) will be called thereciproca

n
=>4
=0

of f(x)

e f(x) reciprocalmeansf (z) = -

= f ()

e thenon-reciprocal part off (x) is f(ax) removed of its
irreducible reciprocal factors (sort of)



BAsiCc QUESTION 1: Are lacunary polynomials easier t
factor than non-lacunary polynomials?
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L JUNGGREN’ S IDEA: Assumef(x) has more than one
non-reciprocal factor. Therf(xz) = wu(x)v(x) for
someu(x) andv(x) in Z[x] which are non-reciprocal.
Consider
Then

f(z) f(z) = u(z)v(z)u(z)v(z) = w(z)w(z).
Compare the coefficients af€8 J on the left and right.

On the left it is||f||?, and on the right it is||w||.
Hence [|w|| = || f]|.
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f(z) = u(z)v(z)
Three Properties ofw(x):

e There existsw(z) with f(z)f(z) = w(z)w(x),
w(x) # f(x), andw(xz) # f(x) if and only if the
non-reciprocal part of (x) is reducible.

o [lwll = |I£]

o If f(x)is a0, 1-polynomial, thenw(x) is also.
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How to Proceed: We check thatw(x) # f(x) and
thatw(x) # f(x). Sincew(z) # f(x) andw(x) #

f(w), the non-reciprocal part gf (x) is reducible.
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Recall
f(x) = 14 2211 4 517 4 5575 | ;1245 | 1398
A factor of f(x) is

ged(f(z), w(x)) = 1 + x?1 — 2304 4 o881,
We have the factorization
F(x) = (142211 _ 5364 4 881y(q | ;364 4 517y

MAPLE: irreduc(f);

took > 3 hours on an Ultra 5 Workstation

Comment: x? + 1 is a factor off(x)
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length of the input?
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SIMILAR COMMENT : Suppose we want to test a polync
mial f(x) € Z[x] for irreducibility. If the polynomial
IS lacunary, should we be content with an algorithm tr
runs in time that is polynomial ideg f (as well as the
logarithm of its height)? Maybe not.

PossIBLE THEOREM: There is an algorithm with the
following property: Given a non-reciprocgf(x) € Z[x]
with N non-zero terms and heiglfi, the algorithm de-
termines whethef () is irreducible in time

¢(N, H)(log deg )¢ (V)

wherec(IN, H) depends only odV and H and ¢’(IN)
depends only oiV.



BAsIC QUESTION 2: Can we categorize the polynomial
having small Euclidean norm that are reducible?
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Ljunggren (1960): Investigated the irreducibility of

x® + 2P +1 and z=£%+ 2P + x€ 4+ 1.

Theorem: The non-cyclotomic parts af® + xb + 1 (if
a > b > 0)and ofx®+x+ 241 (ifa > b > ¢ > 0)
are always irreducible.




Selmer (1956): Investigated the irreducibility of

r? + mb - 1.

Ljunggren (1960): Investigated the irreducibility of

22+ 2+1 and 2%+ 2%+ 2¢+ 1.

Theorem: The non-cyclotomic parts af® + x? + 1 (if
a > b > 0)and ofx®+xz+ 241 (ifa > b > ¢ > 0)
are always irreducible.

Mills (1985): Noted that
3+’ +x—1= (2®+1)(e3+2%—1) (3 —z+1).



B+’ +x—1= (2?41 (x> +2*—1)(z®—x+1)
eS+xtra?—1 = (2?41) (x> +2?—1)(x® —z?+1)
S —a®—zt—1 = (?+1) (P —x—1) (P —x+1)
B—x’'—x—1= (2®4+1)(x®—z—1) (x> —2*+1)



B+’ +x—1= (2?41 (x> +2*—1)(z®—x+1)
eS+xtra?—1 = (2?41) (x> +2?—1)(x® —z?+1)
S —a®—zt—1 = (?+1) (P —x—1) (P —x+1)
B—x’'—x—1= (2®4+1)(x®—z—1) (x> —2*+1)

Call these “variations” of each other.



Mill's Theorem: Suppose
f(x) — 2%+ 2+ 1 witha >b >0

or
f(x) = x° z? +2¢4+1 witha>b>c>0.

Then the non-cyclotomic part ¢f(x) is irreducible unless
f(x) is a variation of
28k & 2Tk o k4

_ ($2k + 1)($3k + $2k . 1)($3k . iEk + 1).




Theorem (Schinzel): Fix ag,...,a, € Z — {0}. Then
It is possible to classify the polynomials of the form

arz® + .« + a1zh 4 ag
that have reducible non-reciprocal part.



Theorem (Schinzel): Fix ag,...,a, € Z — {0}. Then
It is possible to classify the polynomials of the form

arz® + .« + a1zh 4 ag
that have reducible non-reciprocal part.

Theorem (Solanand F): If a > b > ¢ > d > 0,
then the non-reciprocal part e + zb + 2¢ + 2% + 1
IS irreducible.



Theorem: Ifa > b > c > d > e > 0, then the
non-reciprocal part of

f(x) — 2%+ 2P 4 2 2% 4 241
IS irreducible unlesg (x) is a variation of

_ 5s+3t 4s+2t 2s+2t t S
f(x) == + x + x + " +x°+1
_ (CE3S+2t . $S+t i CBt i 1)($2S+t i S i 1).



Theorem: If n > ¢ > b > a > 0, then the non-
reciprocal part of f () = ™" + 2+ 2 + 2* + 1 is
irreducible unlessf (x) is a variation of one of the follow-
INg:




Theorem: If n > ¢ > b > a > 0, then the non-
reciprocal part of f () = ™" + 2+ 2 + 2* + 1 is
irreducible unlessf (x) is a variation of one of the follow-
INg:

m81& _ :B7t _ ZB475_|_$2t — 1= (:Ij3t _ :Bt _ 1)($5t _ w4t —|—£E3t _ wt + 1)

P g (m3t " 1)(33515_'_3341& _ g2t gt 1)

PR R R S (2% — 22 + 1) (2% + 2% — 2% — 2t — 1)

210t _ Tt 6t 4t g (2% — 2t — 1)(m7t + 2t g — gzt 1)
210 9 g8 gt 1 = (2% — 22 4 1)(w7t +aft — g gt — 1)

210t _

o — 2 gt 1 = (wSt EE LTI, s 1)(w5t boptt g2 gt 1)
10t _ O _ g6t 4 g3t (w?,t _ gt 1)(w7t TR . TR L 1)

e LS CRURNE L S (w3t _ g2y 1)(w7t 4Bt gt gt g2t gt 1)



2 g8 g8t 5t 1 — (2% gt 4 1) (2™ — 2% — 2 — xt — 1)

2 St St gt 1 = (2% — 2 1) (% 2™ 2% 4 2% — 22— gt 1)
213 gl g9t ot (% gt 1)(210 b 2Tt — S g St g? gt 4 1)
Z1Bt Ul g 10t g2t g (5t g4t | g2t gt L 1)(g8t 4Tt g% gt 1)

Zl gl g9 g3t (Tt g8t g3t gty q)
X (2T + 2% £ 2% — 3 _ 2 gt 1)
2l g0 g8t T 1 — (Tt — Bt g5t g3t g2 gt 1)
% (w7t -|—$6t _ £B4t _ wt _ 1)
g2ty gt L p? gt 1 = (2f — 2%+ 1) (=P — ¥ — 1)
pOTH2 g2 gttu gt (g2thu _ gttu ) (gBttu g gt 4 )

m5t+3u _ m4t—|—2'u, _ wt—l—u _ mt -1 = (m2t—|—u _ wt _ 1)(w3t+2u _|_ wt—{—u _|_ 1)



How to Prove Such Theorems:



f m’n C a
— — b



f:a:Z—wc—a:b—l—a:a—l—l
f=x _I_mn—a,_wn—b_wn—c_l_l



f=a" —2¢— 2P+ 2%+ 1
f:mn_l_mn—a_wn—b_wn—c+1

ff: 1422 — CBb _ pC_ pn—cC _ wn—b_l_wn—a
n+a—c mn—l—a,—b + wn—l—b—c 4o



f=a" —2¢— 2P+ 2%+ 1
f:mn_l_mn—a_wn—b_wn—c+1

ff: 1422 — CBb _ pC_ pn—cC _ wn—b_l_wn—a
n+a—c _ mn—l—a,—b + wn—l—b—c 4.

" 4+t — 2’ — 2" + 1
wn_mn—r_mn—s_l_mn—t_l_l

S
|

&
|



f=a" —2¢— 2P+ 2%+ 1
f:mn_l_mn—a_wn—b_wn—c+1

fJ'E: 1422 — wb _ pC _ pn—C _ wn—b_l_wn—a
n+a—c CUn—l—a,—b + wn—l—b—c 4o

S
|

e Lt — S — 2" 1

Ww=x" — """ _mn—s+wn—t+1

ww = 1—x" — 25 + wt 4+ wn—t _ NS _ pn-rT
. CB'n,—l—'r—t i CB'n,—l—'r—s . CBn—l—s—t 4.



ff: 1422 — wb _ pC _ pn—C _ Cc'n—b_l_ajn—a
n+a—c CUn—l—a,—b + mn—l—b—c 4o

wip = 1—2" — 5 4+ a:t i CEn—t _ TS _ pn—T
_ pntr—t i ptT—8 _ nts—t 1.



ff: 1422 — wb _ pC _ pn—C _ Cc'n—b_l_ajn—a

. wn—l—a—c . CUn—l—a,—b + mn—i—b—c 4o

ww=1—z" — 25+t + 2"t — "5 — T
_ pntr—t i ptT—8 _ nts—t 1.

Basic Idea: We want to equate exponents. But there m
be cancellation of terms.



2@ + o ol 4+ wn—i—b—c 4+ . 4+ 5
i wn—s i mn—r i mn—l—r—t i mn—i—s—t
— € + 21— C + :Bb + :Bn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— ¢4 "¢ 4+ :Bb + mn—b + pnta—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Basic Idea: Solve the resulting systems of equations o
tained by equating exponents.



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

O0<a<<b<<c<n
D<r<s<t<n



20 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a



20 + p—a + wn—l—b—c_|_ 7 —I—CIZS
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a, n —a



x4 g wn—|—b—c_|_ " 4+ x5
i wn—s i mn—r i mn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + :Bn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an-+b—c




x4 g wn—|—b—c_|_ " 4+ x5
i wn—s i mn—r i mn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + :Bn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—ecr




x4 g wn—|—b—c_|_ " 4+ x5
i wn—s i mn—r i mn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + :Bn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—cr,n—s




x4 g wn—|—b—c_|_ " 4+ x5
i wn—s i mn—r i mn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + :Bn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t




70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + wn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t

Possible Least Exponent on the Right:
n —=c¢C



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + wn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t

Possible Least Exponent on the Right:
n—cb



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + wn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t

Possible Least Exponent on the Right:
n—cbt



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21 —C + :Bb + wn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t

Possible Least Exponent on the Right:
n—cbtn—t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t

Possible Least Exponent on the Right:
n—cbtn—t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
an—an+b—crn—sn-+r—t

Possible Least Exponent on the Right:
n—ec t,n—1t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a, n+b—c,rn—sn+r—t

Possible Least Exponent on the Right:
n—ec t,n—1t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a, rn—sn—+nr—t

Possible Least Exponent on the Right:
n—ec t,n—1t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a, rn—sn—+nr—t

Possible Least Exponent on the Right:
n — c, n—1t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a, T, n+r—t

Possible Least Exponent on the Right:
n — c, n—1t



70 + L —a + wn—i—b—c + 7 + 75
i wn—s i mn—r i wn—l—r—t i mn—i—s—t
— L + 21— C + :Bb + mn—b + wn—l—a—c
+ wn—l—a—b + CCt + wn—t + mn—|—r—s

Modified Idea: Proceed as suggested but make use of
ordering of the exponents.

Possible Least Exponent on the Left:
a, r

Possible Least Exponent on the Right:
n — c, n—1t



Possible Least Exponent on the Left:
a, r

Possible Least Exponent on the Right:
n — c, n—t



Possible Least Exponent on the Left:
a, r

Possible Least Exponent on the Right:
n — c, n—t

One of the Following Holds:
a=—mn—=c¢c
a=mn—1
T =N —2¢0C

r=mn—1



