ON THE FACTORIZATION

OF LACUNARY POLYNOMIALS

by Michael Filaseta University of South Carolina

ON THE FACTORIZATION

OF LACUNARY POLYNOMIALS

by Michael Filaseta University of South Carolina

Includes Joint Work With

Douglas Meade, Robert Murphy, & Andrzej Schinzel

$$ullet$$
 if $f(x) = \sum_{j=0}^n a_j x^j$, then $\|f\|^2 = \sum_{j=0}^n a_j^2$

$$ullet$$
 if $f(x) = \sum_{j=0}^n a_j x^j$, then $\|f\|^2 = \sum_{j=0}^n a_j^2$

$$ullet ilde f(x) = x^{\deg f} f(1/x)$$

$$ullet$$
 if $f(x) = \sum_{j=0}^n a_j x^j$, then $\|f\|^2 = \sum_{j=0}^n a_j^2$

- $ullet ilde f(x) = x^{\deg f} f(1/x)$
- $oldsymbol{ ilde{f}}(oldsymbol{x})$ will be called the *reciprocal of* $oldsymbol{f}(oldsymbol{x})$

$$ullet$$
 if $f(x)=\sum_{j=0}^n a_j x^j$, then $\|f\|^2=\sum_{j=0}^n a_j^2$

- $ullet ilde f(x) = x^{\deg f} f(1/x)$
- $oldsymbol{ ilde{f}}(oldsymbol{x})$ will be called the *reciprocal of* $oldsymbol{f}(oldsymbol{x})$
- ullet f(x) reciprocal means $ilde f(x)=\pm f(x)$

$$ullet$$
 if $f(x) = \sum_{j=0}^n a_j x^j$, then $\|f\|^2 = \sum_{j=0}^n a_j^2$

- $ullet ilde f(x) = x^{\deg f} f(1/x)$
- ullet $ilde{f}(x)$ will be called the *reciprocal of* $oldsymbol{f}(x)$
- ullet f(x) reciprocal means $ilde{f}(x)=\pm f(x)$
- the non-reciprocal part of f(x) is f(x) removed of its irreducible reciprocal factors (sort of)

BASIC QUESTION 1: Are lacunary polynomials easier to factor than non-lacunary polynomials?

$$w(x) = u(x)\tilde{v}(x)$$
.

$$w(x) = u(x)\tilde{v}(x)$$
.

Then

$$f(x) ilde{f}(x)=u(x)v(x) ilde{u}(x) ilde{v}(x)=w(x) ilde{w}(x).$$

$$w(x) = u(x)\tilde{v}(x)$$
.

Then

$$f(x) ilde{f}(x) = u(x)v(x) ilde{u}(x) ilde{v}(x) = w(x) ilde{w}(x).$$

Compare the coefficients of $x^{\deg f}$ on the left and right.

$$w(x) = u(x)\tilde{v}(x)$$
.

Then

$$f(x) ilde{f}(x)=u(x)v(x) ilde{u}(x) ilde{v}(x)=w(x) ilde{w}(x).$$

Compare the coefficients of $x^{\deg f}$ on the left and right. On the left it is $||f||^2$, and on the right it is $||w||^2$. Hence, ||w|| = ||f||.

$$f(x) = u(x)v(x)$$

$$w(x) = u(x)\tilde{v}(x)$$

$$f(x) = u(x)v(x)$$

$$w(x) = u(x)\tilde{v}(x)$$

$$f(x) = u(x)v(x) \ w(x) = u(x) ilde{v}(x)$$

• There exists w(x) with $f(x)\tilde{f}(x) = w(x)\tilde{w}(x)$, $w(x) \neq f(x)$, and $w(x) \neq \tilde{f}(x)$ if and only if the non-reciprocal part of f(x) is reducible.

$$f(x) = u(x)v(x) \ w(x) = u(x) ilde{v}(x)$$

- There exists w(x) with $f(x)\tilde{f}(x) = w(x)\tilde{w}(x)$, $w(x) \neq f(x)$, and $w(x) \neq \tilde{f}(x)$ if and only if the non-reciprocal part of f(x) is reducible.
- ullet $\|w\|=\|f\|$

$$f(x) = u(x)v(x) \ w(x) = u(x) ilde{v}(x)$$

- There exists w(x) with $f(x)\tilde{f}(x) = w(x)\tilde{w}(x)$, $w(x) \neq f(x)$, and $w(x) \neq \tilde{f}(x)$ if and only if the non-reciprocal part of f(x) is reducible.
- $\bullet \|w\| = \|f\|$
- If f(x) is a 0, 1-polynomial, then w(x) is also.

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f(x) ilde{f}(x) = 1 + x^{153} + x^{211} + x^{364} + x^{517} \ + x^{575} + x^{670} + x^{728} + x^{823} + x^{881} \ + x^{1034} + x^{1092} + x^{1187} + x^{1245} \ + x^{1340} + 6x^{1398} + \cdots$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f(x) ilde{f}(x) = 1 + x^{153} + x^{211} + x^{364} + x^{517} \ + x^{575} + x^{670} + x^{728} + x^{823} + x^{881} \ + x^{1034} + x^{1092} + x^{1187} + x^{1245} \ + x^{1340} + 6x^{1398} + \cdots$$

$$f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \dots]$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \dots]$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f} o [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \dots]$$

$$w = 1 + \dots + x^{1398}$$

$$\widetilde{w} = 1 + \dots + x^{1398}$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

have more than one non-reciprocal factor?

$$f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$$

$$w = 1 + \dots + x^{1398}$$

$$\widetilde{w} = 1 + \dots + x^{1398}$$

Question: How can we get the exponent 153 in $w\widetilde{w}$?

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f} o [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$$

$$w = 1 + x^{153} + \dots + x^{1398}$$

$$\widetilde{w} = 1 + \dots + x^{1398}$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f} o [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$$

$$w = 1 + x^{153} + \dots + x^{1398}$$

$$\widetilde{w} = 1 + \dots + x^{1245} + x^{1398}$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f} o [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$$

$$w
ightarrow [0, 153, \ldots, 1398]$$

$$\widetilde{w}
ightarrow [0,\ldots,1245,1398]$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$$

$$w o [0, 153, \ldots, 1398]$$

$$\widetilde{w}
ightarrow [0,\ldots,1245,1398]$$

$$w\widetilde{w}$$
 (so far) $\rightarrow [0, 153, 1245, 1398, 1551, 2643, 2796]$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

$$f ilde{f} o [0, 153, extbf{211}, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \dots]$$

$$w o [0, 153, \ldots, 1398]$$

$$\widetilde{w}
ightarrow [0,\ldots,1245,1398]$$

$$w\widetilde{w}$$
 (so far) $\rightarrow [0, 153, 1245, 1398, 1551, 2643, 2796]$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$

have more than one non-reciprocal factor?

$$f ilde{f} o [0, 153, extbf{211}, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \dots]$$

$$w o [0, 153, \ldots, 1398]$$

$$\widetilde{w}
ightarrow [0,\ldots,1245,1398]$$

$$w\widetilde{w}$$
 (so far) $\rightarrow [0, 153, 1245, 1398, 1551, 2643, 2796]$

Question: How can we get 211 in $w\widetilde{w}$?

 $f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$

 $f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$

 $w
ightarrow [0, 153, \ldots, 1398]$

 $\widetilde{w}
ightarrow [0,\ldots,1245,1398]$

 $f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$

 $w o [0, 153, 211, \dots, 1398]$

 $\widetilde{w}
ightarrow [0,\ldots,1245,1398]$

 $f ilde{f} o [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots]$

 $w o [0, 153, 211, \dots, 1398]$

 $\widetilde{w}
ightarrow [0,\ldots,1187,1245,1398]$

 $egin{aligned} f ilde f &
ightarrow [0,153,211,364,517,575,670,728,823,881,\ 1034,1092,1187,1245,1340,1398,\ldots] \ & w
ightarrow [0,153,211,\ldots,1398] \ & \widetilde w
ightarrow [0,\ldots,1187,1245,1398] \end{aligned}$

 $w\widetilde{w}
ightarrow [0, 153, 211, 1187, 1245, 1340, 1398, \dots]$

 $w o [0, 153, 211, \dots, 1398]$

 $\widetilde{oldsymbol{w}}
ightarrow [0,\ldots,1187,1245,1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 1187, 1245, 1340, 1398, \dots]$

Note: Everything appears fine.

 $w
ightarrow [0,153,211,\ldots,1398]$

 $\widetilde{oldsymbol{w}}
ightarrow [0,\ldots,1187,1245,1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 1187, 1245, 1340, 1398, \dots]$

Note: Everything appears fine.

 $w
ightarrow [0,153,211,\ldots,1398]$

 $\widetilde{w}
ightarrow [0,\ldots,1187,1245,1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 1187, 1245, 1340, 1398, \dots]$

Note: Everything appears fine.

Question: How can we get **364** in $\widetilde{\boldsymbol{w}}$?

 $w o [0, 153, 211, \dots, 1398]$

 $\widetilde{w}
ightarrow [0,\ldots,1187,1245,1398]$

 $w o [0, 153, 211, 364, \dots, 1398]$

 $\widetilde{w} \rightarrow [0, \dots, 1034, 1187, 1245, 1398]$

 $f ilde{f}
ightarrow [0,153,211,364,517,575,670,728,823,881,1034,1092,1187,1245,1340,1398,\dots] \ w
ightarrow [0,153,211,364,\dots,1398] \ \widetilde{w}
ightarrow [0,\dots,1034,1187,1245,1398] \ w \widetilde{w} ext{ (so far)}
ightarrow [0,153,211,364,1034,1187,1245,$

 $1340, 1398, \ldots$

```
f	ilde{f} 
ightarrow [0,153,211,364,517,575,670,728,823,881,\\ 1034,1092,1187,1245,1340,1398,\dots] \ w 
ightarrow [0,153,211,364,\dots,1398] \ \widetilde{w} 
ightarrow [0,\dots,1034,1187,1245,1398] \ w\widetilde{w} \ (\text{so far}) 
ightarrow [0,153,211,364,1034,1187,1245,\\ 1340,1398,\dots]
```

Note: Everything appears fine

```
f	ilde{f} 
ightarrow [0,153,211,364,517,575,670,728,823,881,\ 1034,1092,1187,1245,1340,1398,\dots] \ w 
ightarrow [0,153,211,364,\dots,1398] \ \widetilde{w} 
ightarrow [0,\dots,1034,1187,1245,1398] \ w\widetilde{w} \ (\text{so far}) 
ightarrow [0,153,211,364,1034,1187,1245,\ 1340,1398,\dots]
```

Note: Everything appears fine ... or does it?

 $w\widetilde{w}$ (so far) \to [0, 153, 211, 364, 1034, 1187, 1245,

 $1340, 1398, \ldots$

Problem: The coefficient of x^{1187} is 2 (since 0 + 1187 = 153 + 1034 = 1187).

 $w o [0, 153, 211, 364, \dots, 1398]$

 $\widetilde{w}
ightarrow [0, \dots, 1034, 1187, 1245, 1398]$

 $w\widetilde{w}$ (so far) $\to [0, 153, 211, 364, 1034, 1187, 1245, 1340, 1398, ...]$

Problem: The coefficient of x^{1187} is 2 (since 0 + 1187 = 153 + 1034 = 1187).

How to Proceed: Since 364 cannot be an exponent in w, we backtrack and consider 364 as an exponent in \widetilde{w} .

 $w o [0, 153, 211, \dots, 1034, 1398]$

 $\widetilde{w} \rightarrow [0, 364, \dots, 1187, 1245, 1398]$

 $f ilde{f}
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\ 1034, 1092, 1187, 1245, 1340, 1398, \ldots] \ w
ightarrow [0, 153, 211, \ldots, 1034, 1398] \ \widetilde{w}
ightarrow [0, 364, \ldots, 1187, 1245, 1398]$

 $m{w}\widetilde{w}$ (so far) ightarrow [0, 153, 211, 364, 517, 575, 1034, 1187, 1245, 1340, 1398, ...]

```
f	ilde{f} 
ightarrow [0,153,211,364,517,575,670,728,823,881,\\ 1034,1092,1187,1245,1340,1398,\dots] w 
ightarrow [0,153,211,\dots,1034,1398] \widetilde{w} 
ightarrow [0,364,\dots,1187,1245,1398] w\widetilde{w} 	ext{ (so far)} 
ightarrow [0,153,211,364,517,575,1034,\\ 1187,1245,1340,1398,\dots]
```

Note: Everything appears fine.

Note: Everything appears fine.

 $w o [0, 153, 211, \dots, 1034, 1398]$

 $\widetilde{w} o [0, 364, \dots, 1187, 1245, 1398]$

 $w\widetilde{w}$ (so far) $\rightarrow [0, 153, 211, 364, 517, 575, 1034, 1187, 1245, 1340, 1398, ...]$

Note: Everything appears fine.

Question: How can we get 670 in $w\widetilde{w}$?

 $w o [0, 153, 211, \dots, 1034, 1398]$

 $\widetilde{w} o [0, 364, \dots, 1187, 1245, 1398]$

 $w \rightarrow [0, 153, 211, 670, \dots, 1034, 1398]$

 $w \rightarrow [0, 153, 211, 670, 1034, 1398]$

 $w \rightarrow [0, 153, 211, 670, 1034, 1398]$

 $\widetilde{w}
ightarrow [0, 364, 728, 1187, 1245, 1398]$

 $w \rightarrow [0, 153, 211, 670, 1034, 1398]$

 $\widetilde{w}
ightarrow [0, 364, 728, 1187, 1245, 1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 364, 517, 575, 670, 728, 881, 939, 1034, 1187, 1245, 1340, 1398, \dots]$

 $w \rightarrow [0, 153, 211, 670, 1034, 1398]$

 $\widetilde{w}
ightarrow [0, 364, 728, 1187, 1245, 1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 364, 517, 575, 670, 728, 881, 939, 1034, 1187, 1245, 1340, 1398, \dots]$

Problem: The coefficient of x^{1034} is 2 (since 1034 + 0 = 670 + 364 = 1034).

 $w \rightarrow [0, 153, 211, 670, 1034, 1398]$

 $\widetilde{w}
ightarrow [0, 364, 728, 1187, 1245, 1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 364, 517, 575, 670, 728, 881, 939, 1034, 1187, 1245, 1340, 1398, \dots]$

Problem: The coefficient of x^{1034} is 2 (since 1034+0=670+364=1034). Also, the exponent 939 should not be in $w\widetilde{w}$.

 $w \rightarrow [0, 153, 211, 670, 1034, 1398]$

 $\widetilde{w}
ightarrow [0, 364, 728, 1187, 1245, 1398]$

 $egin{aligned} w\widetilde{w} &
ightarrow [0, 153, 211, 364, 517, 575, 670, 728, 881, \\ & 939, 1034, 1187, 1245, 1340, 1398, \ldots] \end{aligned}$

How to Proceed: Since 670 cannot be an exponent in w, we backtrack and consider 670 as an exponent in \widetilde{w} .

 $w \rightarrow [0, 153, 211, 728, 1034, 1398]$

 $\widetilde{w}
ightarrow [0, 364, 670, 1187, 1245, 1398]$

 $w \rightarrow [0, 153, 211, 728, 1034, 1398]$

 $\widetilde{w} \rightarrow [0, 364, 670, 1187, 1245, 1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\1034, 1092, 1187, 1245, 1340, 1398, \dots]$

w o [0, 153, 211, 728, 1034, 1398]

 $\widetilde{w} \rightarrow [0, 364, 670, 1187, 1245, 1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\1034, 1092, 1187, 1245, 1340, 1398, \dots]$

Note: We now have $f\tilde{f} = w\tilde{w}$!!

w o [0, 153, 211, 728, 1034, 1398]

 $\widetilde{w}
ightarrow [0, 364, 670, 1187, 1245, 1398]$

 $w\widetilde{w} \rightarrow [0, 153, 211, 364, 517, 575, 670, 728, 823, 881, \\1034, 1092, 1187, 1245, 1340, 1398, \dots]$

Note: We now have $f\tilde{f} = w\tilde{w}$!!

How to Proceed: We check that $w(x) \neq f(x)$ and that $w(x) \neq \tilde{f}(x)$. Since $w(x) \neq f(x)$ and $w(x) \neq \tilde{f}(x)$, the non-reciprocal part of f(x) is reducible.

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$
.

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}.$$

A factor of f(x) is

$$\gcd(f(x), w(x)) = 1 + x^{211} - x^{364} + x^{881}.$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$
.

A factor of f(x) is

$$\gcd(f(x), w(x)) = 1 + x^{211} - x^{364} + x^{881}$$
.

We have the factorization

$$f(x) = (1 + x^{211} - x^{364} + x^{881})(1 + x^{364} + x^{517}).$$

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$
.

A factor of f(x) is

$$\gcd(f(x), w(x)) = 1 + x^{211} - x^{364} + x^{881}$$
.

We have the factorization

$$f(x) = (1 + x^{211} - x^{364} + x^{881})(1 + x^{364} + x^{517}).$$

MAPLE: irreduc(f);

took > 3 hours on an Ultra 5 Workstation

$$f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}$$
.

A factor of f(x) is

$$\gcd(f(x), w(x)) = 1 + x^{211} - x^{364} + x^{881}.$$

We have the factorization

$$f(x) = (1 + x^{211} - x^{364} + x^{881})(1 + x^{364} + x^{517}).$$

MAPLE: irreduc(f);

took > 3 hours on an Ultra 5 Workstation

Comment: $x^2 + 1$ is a factor of f(x)

SILLY SOUNDING COMMENT: Suppose we want to test a positive integer *n* for primality. We would be quite happy to have a polynomial time algorithm, some procedure which takes on the order of a polynomial in log *n* steps.

SILLY SOUNDING COMMENT: Suppose we want to test a positive integer n for primality. We would be quite happy to have a polynomial time algorithm, some procedure which takes on the order of a polynomial in $\log n$ steps. But suppose

$$n = 2^k - 1$$
 or $n = 3^k + 3^\ell + 1$.

SILLY SOUNDING COMMENT: Suppose we want to test a positive integer n for primality. We would be quite happy to have a polynomial time algorithm, some procedure which takes on the order of a polynomial in $\log n$ steps. But suppose

$$n = 2^k - 1$$
 or $n = 3^k + 3^\ell + 1$.

Should we be happy with an algorithm which determines whether such an n is prime in time that is of the order of a polynomial in $\log n$?

SILLY SOUNDING COMMENT: Suppose we want to test a positive integer n for primality. We would be quite happy to have a polynomial time algorithm, some procedure which takes on the order of a polynomial in $\log n$ steps. But suppose

$$n = 2^k - 1$$
 or $n = 3^k + 3^\ell + 1$.

Should we be happy with an algorithm which determines whether such an n is prime in time that is of the order of a polynomial in $\log n$? Maybe not. What is the length of the input?

SIMILAR COMMENT: Suppose we want to test a polynomial $f(x) \in \mathbb{Z}[x]$ for irreducibility. If the polynomial is lacunary, should we be content with an algorithm that runs in time that is polynomial in $\deg f$ (as well as the logarithm of its height)?

SIMILAR COMMENT: Suppose we want to test a polynomial $f(x) \in \mathbb{Z}[x]$ for irreducibility. If the polynomial is lacunary, should we be content with an algorithm that runs in time that is polynomial in $\deg f$ (as well as the logarithm of its height)? Maybe not.

SIMILAR COMMENT: Suppose we want to test a polynomial $f(x) \in \mathbb{Z}[x]$ for irreducibility. If the polynomial is lacunary, should we be content with an algorithm that runs in time that is polynomial in $\deg f$ (as well as the logarithm of its height)? Maybe not.

POSSIBLE THEOREM: There is an algorithm with the following property: Given a non-reciprocal $f(x) \in \mathbb{Z}[x]$ with N non-zero terms and height H, the algorithm determines whether f(x) is irreducible in time

$$c(N, H)(\log \deg f)^{c'(N)}$$

where c(N, H) depends only on N and H and c'(N) depends only on N.

BASIC QUESTION 2: Can we categorize the polynomials having small Euclidean norm that are reducible?

Ljunggren (1960): Investigated the irreducibility of $x^a \pm x^b \pm 1$ and $x^a \pm x^b \pm x^c \pm 1$.

Ljunggren (1960): Investigated the irreducibility of $x^a \pm x^b \pm 1$ and $x^a \pm x^b \pm x^c \pm 1$.

Theorem: The non-cyclotomic parts of $x^a \pm x^b \pm 1$ (if a > b > 0) and of $x^a \pm x^b \pm x^c \pm 1$ (if a > b > c > 0) are always irreducible.

Ljunggren (1960): Investigated the irreducibility of $x^a \pm x^b \pm 1$ and $x^a \pm x^b \pm x^c \pm 1$.

Theorem: The non-cyclotomic parts of $x^a \pm x^b \pm 1$ (if a > b > 0) and of $x^a \pm x^b \pm x^c \pm 1$ (if a > b > c > 0) are always irreducible.

Mills (1985): Noted that

$$x^{8} + x^{7} + x - 1 = (x^{2} + 1)(x^{3} + x^{2} - 1)(x^{3} - x + 1).$$

$$x^{8} + x^{7} + x - 1 = (x^{2} + 1)(x^{3} + x^{2} - 1)(x^{3} - x + 1)$$
 $x^{8} + x^{4} + x^{2} - 1 = (x^{2} + 1)(x^{3} + x^{2} - 1)(x^{3} - x^{2} + 1)$
 $x^{8} - x^{6} - x^{4} - 1 = (x^{2} + 1)(x^{3} - x - 1)(x^{3} - x + 1)$
 $x^{8} - x^{7} - x - 1 = (x^{2} + 1)(x^{3} - x - 1)(x^{3} - x^{2} + 1)$

$$x^{8} + x^{7} + x - 1 = (x^{2} + 1)(x^{3} + x^{2} - 1)(x^{3} - x + 1)$$

$$x^{8} + x^{4} + x^{2} - 1 = (x^{2} + 1)(x^{3} + x^{2} - 1)(x^{3} - x^{2} + 1)$$

$$x^{8} - x^{6} - x^{4} - 1 = (x^{2} + 1)(x^{3} - x - 1)(x^{3} - x + 1)$$

$$x^{8} - x^{7} - x - 1 = (x^{2} + 1)(x^{3} - x - 1)(x^{3} - x^{2} + 1)$$

Call these "variations" of each other.

Mill's Theorem: Suppose

$$f(x) = x^a \pm x^b \pm 1$$
 with $a > b > 0$

or

$$f(x) = x^a \pm x^b \pm x^c \pm 1$$
 with $a > b > c > 0$.

Then the non-cyclotomic part of f(x) is irreducible unless f(x) is a variation of

$$x^{8k} + x^{7k} + x^k - 1$$

= $(x^{2k} + 1)(x^{3k} + x^{2k} - 1)(x^{3k} - x^k + 1)$.

Theorem (Schinzel): Fix $a_0, \ldots, a_r \in \mathbb{Z} - \{0\}$. Then it is possible to classify the polynomials of the form

$$a_r x^{d_r} + \dots + a_1 x^{d_1} + a_0$$

that have reducible non-reciprocal part.

Theorem (Schinzel): Fix $a_0, \ldots, a_r \in \mathbb{Z} - \{0\}$. Then it is possible to classify the polynomials of the form

$$a_r x^{d_r} + \dots + a_1 x^{d_1} + a_0$$

that have reducible non-reciprocal part.

Theorem (Solan and F.): If a > b > c > d > 0, then the non-reciprocal part of $x^a + x^b + x^c + x^d + 1$ is irreducible.

Theorem: If a > b > c > d > e > 0, then the non-reciprocal part of

$$f(x) = x^a + x^b + x^c + x^d + x^e + 1$$

is irreducible unless f(x) is a variation of

$$f(x) = x^{5s+3t} + x^{4s+2t} + x^{2s+2t} + x^t + x^s + 1$$

= $(x^{3s+2t} - x^{s+t} + x^t + 1)(x^{2s+t} + x^s + 1)$.

Theorem: If n > c > b > a > 0, then the non-reciprocal part of $f(x) = x^n \pm x^c \pm x^b \pm x^a \pm 1$ is irreducible unless f(x) is a variation of one of the following:

Theorem: If n > c > b > a > 0, then the non-reciprocal part of $f(x) = x^n \pm x^c \pm x^b \pm x^a \pm 1$ is irreducible unless f(x) is a variation of one of the following:

$$x^{8t} - x^{7t} - x^{4t} + x^{2t} - 1 = (x^{3t} - x^t - 1)(x^{5t} - x^{4t} + x^{3t} - x^t + 1)$$

$$x^{8t} - x^{6t} + x^{4t} - x^t - 1 = (x^{3t} - x^{2t} + 1)(x^{5t} + x^{4t} - x^{2t} - x^t - 1)$$

$$x^{9t} - x^{7t} + x^{6t} - x^t - 1 = (x^{3t} - x^{2t} + 1)(x^{6t} + x^{5t} - x^{2t} - x^t - 1)$$

$$x^{10t} - x^{7t} - x^{6t} - x^{4t} - 1 = (x^{3t} - x^t - 1)(x^{7t} + x^{5t} + x^{2t} - x^t + 1)$$

$$x^{10t} - x^{9t} + x^{8t} - x^t - 1 = (x^{3t} - x^{2t} + 1)(x^{7t} + x^{5t} - x^{2t} - x^t - 1)$$

$$x^{10t} - x^{6t} - x^{5t} + x^{4t} - 1 = (x^{5t} - x^{4t} + x^{3t} - x^t + 1)(x^{5t} + x^{4t} - x^{2t} - x^t - 1)$$

$$x^{10t} - x^{9t} - x^{6t} + x^{3t} - 1 = (x^{3t} - x^t - 1)(x^{7t} - x^{6t} + x^{5t} - x^{3t} + x^{2t} - x^t + 1)$$

$$x^{10t} + x^{7t} + x^{4t} - x^t - 1 = (x^{3t} - x^{2t} + 1)(x^{7t} + x^{6t} + x^{5t} + x^{4t} - x^{2t} - x^t - 1)$$

$$x^{11t} - x^{8t} - x^{6t} - x^{5t} - 1 = (x^{4t} - x^t + 1)(x^{7t} - x^{3t} - x^{2t} - x^t - 1)$$

$$x^{11t} + x^{8t} + x^{6t} - x^t - 1 = (x^{3t} - x^{2t} + 1)(x^{8t} + x^{7t} + x^{6t} + x^{5t} - x^{2t} - x^t - 1)$$

$$x^{13t} - x^{11t} - x^{9t} - x^{4t} - 1 = (x^{3t} - x^t - 1)(x^{10t} + x^{7t} - x^{6t} + x^{5t} + x^{2t} - x^t + 1)$$

$$x^{13t} - x^{11t} + x^{10t} - x^{2t} - 1 = (x^{5t} - x^{4t} + x^{2t} - x^t + 1)(x^{8t} + x^{7t} - x^{2t} - x^t - 1)$$

$$x^{14t} - x^{11t} + x^{9t} - x^{3t} - 1 = (x^{7t} - x^{6t} + x^{3t} - x^t + 1)$$

$$\times (x^{7t} + x^{6t} + x^{5t} - x^{3t} - x^{2t} - x^t - 1)$$

$$x^{14t} - x^{9t} - x^{8t} + x^{7t} - 1 = (x^{7t} - x^{6t} + x^{5t} - x^{3t} + x^{2t} - x^t + 1)$$

$$\times (x^{7t} + x^{6t} - x^{4t} - x^t - 1)$$

$$x^{2t+u} - x^{t+2u} + x^{2u} - x^t - 1 = (x^t - x^u + 1)(x^{t+u} - x^u - 1)$$

$$x^{5t+2u} - x^{4t+2u} - x^{t+u} - x^t - 1 = (x^{2t+u} - x^{t+u} - 1)(x^{3t+u} + x^t + 1)$$

$$x^{5t+3u} - x^{4t+2u} - x^{t+u} - x^t - 1 = (x^{2t+u} - x^t - 1)(x^{3t+2u} + x^{t+u} + 1)$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$f = x^n - x^c - x^b + x^a + 1$$

$$f = x^{n} - x^{c} - x^{b} + x^{a} + 1$$

 $\tilde{f} = x^{n} + x^{n-a} - x^{n-b} - x^{n-c} + 1$

$$f = x^{n} - x^{c} - x^{b} + x^{a} + 1$$

 $\tilde{f} = x^{n} + x^{n-a} - x^{n-b} - x^{n-c} + 1$

$$f\tilde{f} = 1 + x^a - x^b - x^c - x^{n-c} - x^{n-b} + x^{n-a} - x^{n+a-c} - x^{n+a-b} + x^{n+b-c} + \cdots$$

$$f = x^{n} - x^{c} - x^{b} + x^{a} + 1$$

 $\tilde{f} = x^{n} + x^{n-a} - x^{n-b} - x^{n-c} + 1$

$$f ilde{f} = 1 + x^a - x^b - x^c - x^{n-c} - x^{n-b} + x^{n-a} - x^{n+a-c} - x^{n+a-b} + x^{n+b-c} + \cdots$$

$$w = x^{n} + x^{t} - x^{s} - x^{r} + 1$$

 $\widetilde{w} = x^{n} - x^{n-r} - x^{n-s} + x^{n-t} + 1$

$$f = x^{n} - x^{c} - x^{b} + x^{a} + 1$$

 $\tilde{f} = x^{n} + x^{n-a} - x^{n-b} - x^{n-c} + 1$

$$f ilde{f} = 1 + x^a - x^b - x^c - x^{n-c} - x^{n-b} + x^{n-a} - x^{n+a-c} - x^{n+a-b} + x^{n+b-c} + \cdots$$

$$w = x^{n} + x^{t} - x^{s} - x^{r} + 1$$

 $\widetilde{w} = x^{n} - x^{n-r} - x^{n-s} + x^{n-t} + 1$

$$w\tilde{w} = 1 - x^r - x^s + x^t + x^{n-t} - x^{n-s} - x^{n-r} - x^{n+r-t} + x^{n+r-s} - x^{n+s-t} + \cdots$$

$$f ilde{f} = 1 + x^a - x^b - x^c - x^{n-c} - x^{n-b} + x^{n-a} - x^{n+a-c} - x^{n+a-b} + x^{n+b-c} + \cdots$$

$$w\tilde{w} = 1 - x^r - x^s + x^t + x^{n-t} - x^{n-s} - x^{n-r} - x^{n+r-t} + x^{n+r-s} - x^{n+s-t} + \cdots$$

$$f ilde{f} = 1 + x^a - x^b - x^c - x^{n-c} - x^{n-b} + x^{n-a} - x^{n+a-c} - x^{n+a-b} + x^{n+b-c} + \cdots$$

$$w ilde{w} = 1 - x^r - x^s + x^t + x^{n-t} - x^{n-s} - x^{n-r} - x^{n+r-t} + x^{n+r-s} - x^{n+s-t} + \cdots$$

Basic Idea: We want to equate exponents. But there may be cancellation of terms.

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Basic Idea: Solve the resulting systems of equations obtained by equating exponents.

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$0 < a < b < c < n$$

$$0 < r < s < t < n$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

 \boldsymbol{a}

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$a, n - a$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$a, n-a, n+b-c$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$a, n-a, n+b-c, r$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$a, n-a, n+b-c, r, n-s$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$n-c$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$n-c, b$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$n-c, b, t$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$n-c, b, t, n-t$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$n-c, b, t, n-t$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, n-a, n+b-c, r, n-s, n+r-t$$

$$n-c$$
, t , $n-t$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, \qquad n+b-c, r, n-s, n+r-t$$

$$n-c$$
, t , $n-t$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, \qquad r, n-s, n+r-t$$

$$n-c$$
, t , $n-t$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a, \qquad r, n-s, n+r-t$$

$$n-c$$
, $n-t$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a$$
, $n+r-t$

$$n-c, \qquad n-t$$

$$x^{a} + x^{n-a} + x^{n+b-c} + x^{r} + x^{s}$$
 $+ x^{n-s} + x^{n-r} + x^{n+r-t} + x^{n+s-t}$
 $= x^{c} + x^{n-c} + x^{b} + x^{n-b} + x^{n+a-c}$
 $+ x^{n+a-b} + x^{t} + x^{n-t} + x^{n+r-s}$

Possible Least Exponent on the Left:

$$a$$
, r

$$n-c, \qquad n-t$$

Possible Least Exponent on the Left:

a,

Possible Least Exponent on the Right:

n-c, n-t

Possible Least Exponent on the Left:

a,

Possible Least Exponent on the Right:

 $n-c, \qquad n-t$

One of the Following Holds:

$$a = n - c$$

$$a = n - t$$

$$r = n - c$$

$$r = n - t$$