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A polynomial f(x) € Q] isirreducible provided
e f(x) has degree at least

e f(x) does not factor as a product of two polynomia
iIn Q[x] each of degre& 1.
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Some Goals of the Talk:

e Give a general discussion of the irreducibility of son
classical polynomials

e Show connections to

—problems in the distribution of primes
—diophantine questions
—transcendence type results

— Galois theory

—wavelets
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Some Polynomials to be Discussed:

e Laguerre Polynomials
e Hermite Polynomials
e Bessel Polynomials

Some Polynomials NOT to be Discussed:

e Cyclotomic Polynomialgtoo well-known)

e Chebyshev Polynomial$oo easy)

e Bernoulli Polynomialgexcept for a special case)
e Legendre Polynomial&oo hard)
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The Laguerre Polynomials:

mate) = e = 32 G ()

Theorem 1 (I. Schur, 1929): Let n be a positive inte-

ger, and letg, a1, - - - , ap, denote arbitrary integers witr
lag| = |an| = 1. Then
L CCn—l

+ -+ + a1 + ag

aAn—— A —
T o Y

IS Irreducible.
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Theorem (1996):Letag, a1, . . . , an, denote arbitrary in-
tegers with|ag| = 1, and let

f@) =" ajal/jt
j=0

If 0 < |an| < n, thenf(x) is irreducible unless

(ap,n) € {(::5, 6), (X7, 10)}
iIn which cases eithef(x) is irreducible orf(x) is the
product of two Iirreducible polynomials of equal degree.
lan| = n, then for some choice ai¢,...,a,_1 € Z
andag = +1, we have thajf (x) is divisible byx 4 1.
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The Generalized Laguerre Polynomials:

L.—O N (Nt o ., —x

L,,(za)(a:) _ex d (a: e )
n! dx™ |
_ ()i +1+a)(-2)]

L%O)(:c) = Ly (x) (the Laguerre Polynomials)



L (x) = (n




Pt ()2,

Theorem 2 (I. Schur): Let n be a positive integer, anc

letag, ay, - ,ay, denote arbitrary integers witlag| =
lan| = 1. Then
g mn—l T
a + a,— e +a1-+a
n(n n 1)! n—1 ! ! 12 0

IS irreducible (over the rationals) unlegas= 2" —1 > 1

(whenax £ 2 can be a factor) on = 8 (when a quadratic
factor is possible).




Theorem (joint with M. Allen): Formn an integer> 1,
define

f(CU) Z ]( —|-1)'

where thea ;s are arbltrary integers witlug| = 1. Write
n+1= k2" with ¥’ odd
and
(n+ 1)n = k23"  with ged(k”, 6) = 1.

If
0 < |an| < min{k’, k"},

then f(x) is irreducible.



n

L,’(za)(m) _ Z n+a)---(J+1 —I—()z)(—ilj)j



n
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Pni(e) = 2 (n — 5)'3!

3=0

1P(@) = o (= — 2)( - 6)
L (z) = %(az — 20)(z — 30)

1
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(@) () _ (n+a) - (G+1+a)(—z)
Pni(e) = 2 (n — 5)'3!

3=0

L (@) = (e — 2)(z — 6)
L (z) = %(az — 20)(z — 30)

1
L (z) = 5 (@ = 30)(z® — 8% + 18722 — 14040)

2512 — 420x + 1224)(25x% — 220x + 264
15000( B )( " )

—1
L) (z) = (5@ — 84)(625x* — 29500
375000

+ 448400x” — 2662080z + 5233536)



Theorem (joint with T.-Y. Lam): Let « be a rational
number which is not a negative integer. Then for all b
finitely many positive integera, the polynomialL.'®) ()

IS Irreducible over the rationals.
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n

L,’(za)(m) _ Z n+a)---(J+1 —I—()z)(—ilj)j

A Special Case.:a = n
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Background:

e VVan der Waerden showed that for “almost all” polync
mials f(x) € Z|x], the Galois group associated wit
f (x) is the symmetric grouSy,.

e Schur showecLﬁ,,O)(m) has Galois grou®y,.

e Schur showecL,(ll)(m) has Galois groupi,, (the alter-
nating group) ifn is odd.

n w‘?
o Schur showed) — has Galois groupty, if 4|n.
— 7!
7=0
e Schur did not find a sequence of polynomials havii
Galois groupA,, withn = 2 (mod 4).
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Theorem (R. Gow, 1989)1f n > 2 is even andL\!") ()
IS irreducible, then the Galois group Eﬁn)(w) IS Ap,.

Comment: Gow also showed thdl;ffzn)(a;) IS irreducible
if

e nn = 2pF wherek € Z1 andp > 3 is prime
e n = 4pF wherek € Z* andp > 7 is prime

Conjecture: If n > 2, thenL,(z")(a:) IS irreducible.



Theorem (joint work with R. Williams): For almost all
positive integers the ponnomialLSz")(a:) s irreducible
(and, hence, has Galois group, for almost alln = 2
(mod 4)). More precisely, the number of < t such

that L\ () is reducible is

9log(2t)
log log(2t)> .

KL exp (

Furthermore, for all but finitely many, L,({") (x) is either

irreducible orsz")(a:) IS the product of a linear polyno-
mial times an irreducible polynomial of degrae— 1.
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positive integers < t, the polynomial
ik o2n \ xJ
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IS Irreducible over the rationals for every choice of intege
ag, ai, ..., an With |ag| = |an| = 1.



Theorem (joint work with R. Williams): For all but

O( exp(91log(2t)/ loglog(2t)))
positive integers < t, the polynomial

Fa) =Y i, .)‘””j

P

; n —
3=0 J

IS Irreducible over the rationals for every choice of intege

ag, ai, ..., an With |ag| = |an| = 1.

Comment: The number ofn < ¢t for which f(x) is
reducible for some choice mij as above Is

> logt.
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s the irreducibility of L\ () doable for all n. > 27?

The proof for almost allr Is not effective. Ifn is large
enough,szn) () cannot have guadratic factorbut what'’s

“large enough”?

However, in joint work with O. Trifonov (and input from
R. TijJdeman, F. Beukers, and our next speaker), the ar
ment can now be made effective. What's needed is:

There exist explicit numbetsand3 > 0 such
that, forn > «,

n(n+1) = 23*m — m > nP.
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Application of the Same Method:

The Ramanujan-Nagell equation
x2 17 =2"

has as its only solution&

Fx, n) in

{(1,3), (3,4), (5,5), (11,7), (181, 15)}.

Moreover, there exist explicit numbets and

B3 > 0 such that, foec >
2

«,

x 7=2"m — m > zP.
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2/5d" (€= /2)

dx™

Hy(x) = (—1)"e”

where
ugj = (2§ — 1)(2j — 3)++-3- 1



The Hermite Polynomials:

x2J

Hon(z) = (- 1>"uznz< i ()

’u,z.7

x>

Hpir(2) = (— 1) uznsnz 3 (—1) (")

=0 U25+2




2]

Han(z) = (~1)™uan Z(— (1)

’UJZJ

x2

Hapir(2) = (—1) uznanz 3 (—1) (")

=0 U25+2

Theorem 3 (I. Schur, 1929): Forn > 1 and arbitrary
integersa ; with |ag| = |an| = 1, the polynomial

Flx) =) ajz® [uy;
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IS Irreducible.



2]

Han(z) = (~1)™uan Z(— (1)

’UJZJ

x2

Hapir(2) = (—1) uznanz 3 (—1) (")

=0 U25+2

Theorem 4 (I. Schur, 1929): Forn > 1 and arbitrary

integersa ; with |ag| = |an| = 1, the polynomial
n
"
@) =) ajz™/ugjio
7=0

IS irreducible unles8n is of the form3% — 1 with v > 1.
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A Similar Type Application of Irreducibility:

E. Gutkin (speaking In the Dynamical Systems ses
sion this evening) dealt with a certain billards question
J. Lagarias posed a related conjecture at the West Co:

Number Theory Conference in 1991.

Letn > 4 and
p(x) =(n—1)(z"" —1) — (n+ 1) (=" — ).
Thenp(x) is (x — 1)3 times an irreducible

polynomial ifn is even andz — 1)3(z + 1)
times an irreducible polynomial # Is odd.

Joint Work With A. Borisov, T.-Y. Lam, O. Trifonov:
True for all butO(t4/51¢) values ofn < t.



Theorem 3 (l. Schur, 1929): Forn > 1 and arbitrary
integersa; with |ag| = |an| = 1, the polynomial

f@) =Y aja? fuy,
j=0

IS Irreducible.



Theorem 3 (l. Schur, 1929): Forn > 1 and arbitrary
integersa; with |ag| = |an| = 1, the polynomial

n
f(@) =) ajw? juy;
7=0
IS Irreducible.

Theorem (joint with M. Allen): Forn > 1 and arbitrary
integersa; with |ag| = 1 and

0 < |lan| <2n —1,

the polynomialf (x) above is irreducible for all but finitely
many pairyan, n).



Theorem 4 (1. Schur, 1929): Forn > 1 and arbitrary

integersa ; with |ag| = |an| = 1, the polynomial
n
"
f(z) =) aja® /ugjis
3=0

IS irreducible unles8n is of the form3% — 1 with v > 1.



Theorem (joint with M. Allen): Formn an integer> 1,

define
fw) = Z a;

where thea ;’s are arbitrary mtegers witlag| = 1. Write
2n + 1 = k’'3% with 31Kk’

u’2]—|—2

and
(2n+1)(2n — 1) = £”3%5" with (k”,15) = 1.

If
0 < |an| < min{k’, K"},
then f(x) is irreducible for all but finitely many pairs

(an,n).
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27 (n — 3)!5!
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The Bessel Polynomials:

yn(x) = Z (n _I_j.)! —)

o) 2)(n — j3)!9!

Brief History:

e E. Grosswald studied the irreducibility of the Bessel p«
nomials in 1951 and conjectured their irreducibility. H
obtained a variety of special cases of irreducibility.

e In 1995, M.F. showed that all but finitely many Bess
polynomials are irreducible.

e O. Trifonov and M.F. have now shown that all Bess
polynomials are irreducible.



The Bessel Polynomials:

yn(x) = Z
0




The Bessel Polynomials:

l(E) = Z .(n—|—j.)! _od
< 15!

Theorem (joint with O. Trifonov): If ag,aq,-..

are arbitrary integers witfug| = |an| = 1, then
i (n+J)! L
i Y925 (n — 5)5!

IS Irreducible.
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e Newton polygons are used to show that if certain con
tions on divisibility by primes holds, thefi(x) is irre-
ducible.

A result of M.G. Dumas (in 1906) eliminates pos-
sible degrees for the factors of a polynomial using
Information about the divisibility of the coefficients
by a given primep (forming Newton polygons with
respect tm).



e Newton polygons are used to show that if certain con
tions on divisibility by primes holds, thefi(x) is irre-
ducible.

“Two such factorization schemes with a common,
non-trivial factorization, will be calledompatible

Otherwise, we call them incompatible. It is clear
that if one can exhibit two incompatible factor-
Ization schemes, one thereby will have proved the
irreducibility of the polynomial considered.”

Emil Grosswald
Bessel Polynomials

Lecture Notes Series



e Newton polygons are used to show that if certain con
tions on divisibility by primes holds, thefi(x) is irre-
ducible.

ldea: To consider factorization schemes using
many primes and show that they are incompatible.
For a polynomial of degrea and ak € [1,n/2],

find a primep such that the Newton polygon with
respect tgp does not allow for a factor of (x) to
have degreé.



e Analysis to show that the conditions hold; usually th
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e Analysis to show that the conditions hold; usually th
Involves cases to eliminate possible factors depend
on the size of their degrees.

Example:

Forl < k < n/2, show

H p" > 2n — 1.

p"||(2n—1)(2n—3)---(2n—2k—+1)
p>2k+1
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The Generalized Bernoulli Polynomials:

t\Y st = ple), "
<et—1) et:ZBn (w)g

n=0

A Special Case:a = n

Theorem (joint with A. Adelberg): A positive proportion

of the polynomiaIsB,g")(m) are Eisenstein (and, hence
irreducible). More precisely, if the number af < ¢ for

which Bf,({")(:c) IS Eisenstein i#3(t), then
B(t) > t/5 for t sufficiently large



