
Seminar Notes: Some Proofs Associated with Irreducibility Theorems

Theorem: Let a0, a1, . . . , an denote arbitrary integers with|a0| = 1, and letf(x) =
n∑

j=0

ajx
j/j!.

If 0 < |an| < n, thenf(x) is irreducible unless(an, n) ∈
{
(±5, 6), (±7, 10)

}
.

Lemma 1 (Dumas):The Newton polygon ofg(x)h(x) with respect to a prime is determined from
the Newton polygons ofg(x) and ofh(x) with respect to the same prime as illustrated below.
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Lemma 2. Let a0, a1, . . . , an denote arbitrary integers with|a0| = 1, and letf(x) =
n∑

j=0

ajx
j/j!.

Let k ∈ [1, n/2] ∩ Z. Supposer ∈ Z+ and a primep satisfy:

(i) p ≥ k + 1

(ii) pr|n(n− 1) · · · (n− k + 1)

(iii) pr - an

Thenf(x) cannot have a factor of degreek.

Proof: AssumeF (x) = n!f(x), with coefficientsbj = ajn!/j!, has a factorg(x) ∈ Z[x] of degree
k, and consider the Newton polygon ofF (x) with respect top.

• Then− k + 1 right-most spots havey-coordinates≥ r.

• The left-most spot hasy-coordinate< r.

• The spots(j, ν(bn−j) for j ∈ {k − 1, k, . . . , n} are on or above edges with positive slope.

• Each edge has slope< 1/k.

• An edge with positive slope cannot be a translated edge of the Newton polygon ofg(x).

• The other edges cannot contain all the translated edges of the Newton polygon ofg(x).

Lemma 1 implies a contradiction.�

The Rest of the Story:Lemma 2 and analytic estimates lead to a proof of the theorem.

Reducible Examples:Considerf(x) =
∑n

j=0 ajx
j/(j+1)! wheren = 2km ≥ 3 andn+1 = 3`m′

with k, `, m, andm′ are positive integers andgcd(mm′, 6) = 1. Takean = mm′, an−1 = mr,
an−2 = s, an−3 = an−4 = · · · = a3 = 0, a2 = −y, a1 = w + y and rewrite(n+ 1)!f(x)/(mm′) as

g(x) = xn+3`rxn−1+3`2ksxn−2−3`−12k−1(n− 1)!yx2+3`2k−1(n− 1)!(w + y)x+3`2k(n− 1)!.

The idea is to showg(x) has the factorq(x) = x2 − 3x− 6. In other words, we want to show that
g(x) modq(x) = 0. The basic approach for “determining” the value ofg(x) modq(x) is outlined.

• For j ≥ 0, define integerscj andbj by xj ≡ cj + bjx (mod q(x)).

• Observe thatcj+1 = 3cj + 6cj−1 andbj+1 = 3bj + 6bj−1 for j ≥ 1.

• UseAj =

(
cj bj

cj+1 bj+1

)
whereA =

(
0 1
6 3

)
to get information about thecj andbj.

(Examples: cjbj+1 − cj+1bj = ±6j for j ≥ 0; ν2(cj) = 1 andν2(bj) = 0 for j > 1)

Comment: The above approach can be used to compute the remainder efficiently when dividing a
sparse polynomial by a small degree polynomial.


