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• the factorization ofn(n + 1)

• Galois groups associated with classical polynomials
• the Ramanujan-Nagell equation
• k-free numbers in short intervals
• k-free values of polynomials and binary forms
• theabc-conjecture
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What are the Pad́e approximations of(1−z)k?

Answer: Rational functions that give good approxima-
tions to(1−z)k near the origin.

Important Equation:

Pr− (1 − z)kQr = z2r+1Er

deg Pr = deg Qr = r < k, deg Er = k − r − 1



Some Properties of the Polynomials:

(i) Pr(z), (−z)kQr(z), andz2r+1Er(z) satisfy

z(z−1)y′′ +
(
2r(1−z)−(k−1)z

)
y′ + r(k+r)y = 0.

(ii) Qr(z) =
r∑

j=0

(
2r − j

r

)(
k − r + j − 1

j

)
zj

(iii) Qr(x) =
(k+r)!

(k−r−1)! r! r!

∫ 1

0

(1−t)rtk−r−1(1−t+xt)r dt

(iv) Pr(x)Qr+1(x) − Qr(x)Pr+1(x) = cx2r+1
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Pr − (1 − z)kQr = z2r+1Er

WARNING : In the applications you are about
to see, this identity is used to get a result of
the type wanted. Typically, a closer analysis
of these polynomials or even a variant of the
polynomials is needed to obtain the currently
best known results in these applications.
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Theorem (Roth): Fix ε > 0 andα ∈ R − Q with α

algebraic. Then there is a constantC = C(α, ε) > 0

such that ∣∣∣α − a

b

∣∣∣ >
C

b2+ε

wherea andb with b > 0 are arbitrary integers.

Comment: Liouville’s result is effective; Roth’s is not.
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Irrationality measures:

Theorem ( Bennett ):Fora andb integers withb > 0,∣∣∣ 3√
2 − a

b

∣∣∣ >
1

4 · b2.47
.

Comment: Similar explicit estimates have also been made
for certain other cube roots.
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Pr − (125/128)1/3Qr = z2r+1Er

Rearrange and Normalize to Integers

3√
2 br − ar = smallr∣∣∣ 3√
2 − ar

br

∣∣∣ = smallr

Wait!! I thought we wanted that LARGE!!
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Diophantine equations:

Theorem: Let n be a non-zero integer. Ifx and y are
integers satisfyingx3 − 2y3 = n, then|y| < 16n2.



Diophantine equations:

Theorem (Bennett):If a, b, andn are integers withab 6=
0 andn ≥ 3, then the equation

|axn + byn| = 1

has at most one solution in positive integersx andy.
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]

− 2

(ii) No one knows how to prove (i).

(iii) (i) holds if
∥∥∥(3

2

)k∥∥∥ > 0.75k

Theorem (Dubitskas): If k > 4, then∥∥∥(3

2

)k∥∥∥ > 0.5767k.
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Want: Let p1, p2, . . . , pr be primes. There is anN =

N(θ, p1, . . . , pr) such that ifn ≥ N and

n(n + 1) = p
e1
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2 · · · per

r m

for some integerm, thenm > nθ.

Effective Approach: (Linear Forms of Logarithms)

θ =
c

log log n

Problem: Can we narrow the gap between these
ineffective and effective results?
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Want: Let p1, p2, . . . , pr be primes. There is anN =

N(θ, p1, . . . , pr) such that ifn ≥ N and

n(n + 1) = p
e1
1 p

e2
2 · · · per

r m

for some integerm, thenm > nθ.

Theorem (Bennett, F., Trifonov): If n ≥ 9 and

n(n + 1) = 2k3`m,

then
m ≥ n1/4.
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√

n.

Comment: The conjecture has been verified for

512 < n ≤ 101000.
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Then
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−
Obtain an upper bound on3k.

Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 Pm2) = ±Q − Em2.



Main Idea: Find “small” integersP , Q, andE such that

3kP − 2`Q = E

and

Qm1 − Pm2 6= 0.

Then

3k (Qm1 − Pm2) = ±Q − Em2.

Obtain an upper bound on3k. Since3km1 ≥ n, it
follows thatm1 and, hence,m = m1m2 are not small.
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The “small” integersP , Q, andE are obtained through
the use of Pad́e approximations for(1 − x)k.

More precisely, one takesz = 1/9 in the equation

Pr(x) − (1 − x)kQr(x) = x2r+1Er(x).
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What’s Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2
and 3) with a difference of powers of these primes being
small (like32 − 23 = 1).
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Galois groups associated with classical polynomials:

• D. Hilbert (1892) used his now classical Hilbert’s Irre-
ducibility Theorem to show that for each integern ≥ 1,
there is polynomialf(x) ∈ Z[x] such that the Galois
group associated withf(x) is the symmetric groupSn.
He also showed the analogous result in the case of the
alternating groupAn.

• Hilbert’s work and work of E. Noether (1918) began
what has come to be known as Inverse Galois Theory.

• Van der Waerden showed that for “almost all” polyno-
mialsf(x) ∈ Z[x], the Galois group associated with
f(x) is the symmetric groupSn.
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Galois groups associated with classical polynomials:

• Schur showedL
(0)
n (x) has Galois groupSn.

• Schur showedL
(1)
n (x) has Galois groupAn (the alter-

nating group) ifn is odd.

• Schur showed
n∑

j=0

xj

j!
has Galois groupAn if 4|n.

• Schur did not find an explicit sequence of polynomials
having Galois groupAn with n ≡ 2 (mod 4).
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Theorem (joint work with R. Williams): For almost all

positive integersn the polynomialL
(n)
n (x) is irreducible

(and, hence, has Galois groupAn for almost all evenn).

Comment: The method had an ineffective component to

it. We could show that ifn is sufficiently large andL
(n)
n (x)

is reducible, thenL
(n)
n (x) has a linear factor. But we

didn’t know what sufficiently large was.

Work in Progress with Trifonov: There is an effetive
boundN such that ifn ≥ N andn ≡ 2 (mod 4),

thenL
(n)
n (x) has Galois groupAn.
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Classical Ramanujan-Nagell Theorem: If x andn are
integers satisfying

x2 + 7 = 2n,

then
x ∈ {1, 3, 5, 11, 181}.



The Ramanujan-Nagell equation:

Some Background: Beukers used a method “similar” to
the approach for finding irrationality measures to show that√

2 cannot be approximated too well by rationalsa/b

with b a power of2. This implies bounds for solutions
to the Diophantine equationx2 + D = 2n with D fixed.
This led to him showing that ifD 6= 7, then the equa-
tion has at most4 solutions. Related independent work
by Apéry, Beukers, and Bennett establishes that for odd
primesp not dividingD, the equationx2 + D = pn has
at most3 solutions. All of these are in some sense best
possible (though more can and has been said).
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Problem: If x2+7 = 2nm andx is not in the set above,
then can we say thatm must be large?

Connection with n(n + 1) problem:

x2 + 7 = 2nm

(
x+

√−7

2

)

↑
linear

(
x−√−7

2

)

↑
linear

=

(
1+

√−7

2

)

↑
prime

n−2(
1−√−7

2

)

↑
prime

n−2

m



Theorem (Bennett, F., Trifonov): If x, n andm are pos-
itive integers satisfying

x2 + 7 = 2nm and x 6∈ {1, 3, 5, 11, 181},

then
m ≥ ???
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Theorem (Bennett, F., Trifonov): If x, n andm are pos-
itive integers satisfying

x2 + 7 = 2nm and x 6∈ {1, 3, 5, 11, 181},

then
m ≥ x1/2.

Comment: In the case ofx2 + 7 = 2nm, the difference
of the primes(1 +

√−7)/2 and(1 − √−7)/2 each
raised to the13th power has absolute value≈ 2.65 and
the powers themselves have absolute value≈ 90.51.
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k-free numbers in short intervals:

Problem: Find θ = θ(k) as small as possible such that,
for x sufficiently large, the interval(x, x + xθ] contains
ak-free number.

Main Idea: Show that there are integers in(x, x + xθ]

not divisible by thekth power of a prime. Consider primes
in different size ranges. Deal with small primes and large
primes separately.
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Problem: Find θ = θ(k) as small as possible such that,
for x sufficiently large, the interval(x, x + xθ] contains
ak-free number.

Small Primes: p ≤ z where z = xθ√
log x

The number of integersn ∈ (x, x+xθ] divisible by such
apk is bounded by∑

p≤z

(
xθ

pk
+ 1

)
≤

( ∑
p prime

xθ

p2

)
+ π(z)

≤
(

π2

6
− 1

)
xθ <

2

3
xθ.
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log x

x < pkm ≤ x + xθ =⇒ x

pk
< m ≤ x

pk
+

xθ

pk

=⇒
∥∥∥ x

pk

∥∥∥ <
xθ

Nk

where ‖t‖ = min{|t − `| : ` ∈ Z}
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Exponential Sums: Let δ ∈ (0, 1/2). Let f : R → R

be any function. LetS be a set of positive integers. Then
for any positive integerJ ≤ 1/(4δ), we get

|{u ∈ S : ‖f(u)‖ < δ}|

≤ π2

2(J + 1)

∑
1≤j≤J

∣∣∣ ∑
u∈S

e2πijf(u)
∣∣∣

+
π2

4(J + 1)
|S|.
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Theorem (Halberstam & Roth & Nair):
For x sufficiently large, there is ak-free number in the
interval(x, x + x1/(2k)].
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Theorem (F. & Trifonov): For x sufficiently large, there
is a squarefree number in(x, x + cx1/5 log x].

Theorem (Trifonov): For x sufficiently large, there is a
k-free number in(x, x + cx1/(2k+1) log x].
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Theorem: Let k ≥ n + 1. Forx sufficiently large, there
is an integerm such thatf(m) is k-free with

x < m ≤ x + cx
n

2k−n+r,

wherer =
√

2n − 1
2.



Basic Idea: One works in a number field wheref(x) has
a linear factor. As in the casef(x) = x, one wants to
show certainu (in the ring of algebraic integers in the
field) are not close by considering

(u + a)kP − ukQ

arising from Pad́e approximations. One uses that this ex-
pression is an integer and, hence, either0 or ≥ 1.
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Basic Idea: One works in a number field wheref(x) has
a linear factor. As in the casef(x) = x, one wants to
show certainu (in the ring of algebraic integers in the
field) are not close by considering

(u + a)kP − ukQ

arising from Pad́e approximations. One uses that this ex-
pression is an integer and, hence, either0 or ≥ 1.

Difficulty: An “integer” in this context can be small with-
out being0.

Solution: If it’s small, work with a conjugate instead.
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Theorem (Nair): If f(x) is an irreducible polynomial of

degreen and k ≥ (
2
√

2 − 1
)
n/2, then there are

infinitely many integersm for whichf(m) is k-free.

Theorem: If f(x, y) is an irreducible binary form of de-

green and k ≥ (
2
√

2 − 1
)
n/4, then there are in-

finitely many integer pairs(a, b) for which f(a, b) is
k-free.
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Notation: Q(n) =
∏
p|n

p

The abc-Conjecture: Fora andb in Z+, define

La,b =
log(a + b)

log Q
(
ab(a + b)

)
and

L = {La,b : a ≥ 1, b ≥ 1, gcd(a, b) = 1}.

The set of limit points ofL is the interval[1/3, 1].
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La,b =
log(a + b)

log Q
(
ab(a + b)

)
L = {La,b : a ≥ 1, b ≥ 1, gcd(a, b) = 1}

Theorem: The set of limit points ofL includes the inter-
val [1/3, 36/37].

(work of Browkin, Greaves, F., Nitaj, Schinzel)
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Approach: Makes use of a preliminary result about square-
free values of binary forms. In particular, for

f(x, y) = xy(x + y)(x − y)(x2 + y2)(2x2 + y2)(x2 + 2y2)

× (x4 − x2y2 + y4)(3x4 + 3x2y2 + y4)(x4 + 3x2y2 + 3y4)

the numberf(x, y)/6 takes on the right proportion of
squarefree values for

X < x ≤ 2X, Y < y ≤ 2Y, X = Y α,

whereα ∈ (1, 3).
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Q3(z) = −(z + 1)(z2 + z + 1),

and

E3(z) = −(z − 2)(z2 − 3z + 3)
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Comment: This shows[10/11, 15/16] is contained in
the set of limit points ofLa,b. A similar argument is given
for other subintervals of[1/3, 36/37] (not all involving
Pad́e approximations).
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