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e irrationality measures

e diophantine equations

e \Waring’s problem

e the factorization ol (n + 1)

e Galois groups associated with classical polynomials
e the Ramanujan-Nagell equation

e k-free numbers in short intervals
e k-free values of polynomials and binary forms

e theabc-conjecture
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What are the Pacé approximations of (1—z)%*?

Answer: Rational functions that give good approximz
tions to(1 — z)* near the origin.

Important Equation:

. (1 . Z)er Z2r+1Er
degPr:degQr:r <k, degE,=k—1r—1



Some Properties of the Polynomials:

() P.(2), (—2)*Q.(2), andz*>"T1E,(2) satisfy
z2(z—1)y" + (2r(1—2z)—(k—1)z)y’ + r(k+7r)y = 0.

(i) Q=) =§ ()

J

(k+1)!
(k—r—1)!r!r!

(V) Pr(2)Qri1(z) — Qr(x)Pryq(x) = ca? 11

(ill) Q- (z) =

1
/(l—t)rtk_"“_l(l—t—l—a:t)’“dt
0
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Pfr — (]_ — Z)kar — er_l_lE'r

WARNING : In the applications you are about
to see, this identity Is used to get a result of
the type wanted. Typically, a closer analysis
of these polynomials or even a variant of the
polynomials is needed to obtain the currently
pest known results in these applications.
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Irrationality measures:

Theorem (Roth):Fixe > 0 anda € R — Q with o
algebraic. Then there is a const@it= C(a,e) > 0
such that

C
b2—|—s

wherea andb with b > 0 are arbitrary integers.

-3 >
a__
b

Comment: Liouville’s result is effective; Roth’s Is not.
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Theorem ( Bennett ): Fora andb integers withb > 0,

1
3
’\/_ ‘ Z L p2AT

Comment: Similar explicit estimates have also been ma
for certain other cube roots.
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P. — (125/128)1/3627« — 22"+ E.
Rearrange and Normalize to Integers

V2 b, — a, = small.

Wait!! | thought we wanted that LARGE!!
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The Basic Approach:

What's small.,? Letb be a positive integer. By choosing
right, one can obtain

1
smalh < b and b, < Cb1'47.
r
3 a 1
‘ \/5 b 4 .p2-47
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Diophantine equations:

Theorem:Let n be a non-zero integer. it andy are
integers satisfying:3 — 2y3 = n, then|y| < 16n2.



Diophantine equations:

Theorem (Bennett):If a, b, andn are integers witlab #
0 andn > 3, then the equation

lax™ + by"| =1

has at most one solution in positive integerandy.
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Waring’s Problem: Let k be an integet> 2. Then there
exists a numbes such that every natural number is a su
of s k" powers. Ifg(k) is the least suck, what isg(k)?

Known: (i) g(k) = 2F + (g)k] —2

(i) no one knows how to prove (i)
N
(iii) (i) holds if H(§> H > 0.75k

(iv) (iii) holdsifandonlyifk > 8
(V) no one knows how to prove (iv)
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Known: (i) g(k) = 2F + [(5) ] — 2

(i) No one knows how to prove (i).
(iii) (i) holds if H(§)kH > 0.75k
2
Theorem (Beukers): If k > 4, then
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Waring'’s Problem:

3\ k

Known: (i) g(k) = 2F + [(5) ] — 2

(i) No one knows how to prove (i).
(iii) (i) holds if H(§)kH > 0.75k
2
Theorem (Dubitskas): If k > 4, then
3\ k
H(—) || > 0.5767F.
2
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for some integem, thenm > 1.

Lehmer: Gave some explicit estimates:

n(n—+1) divisible only by primes< 11 =— n < 9800
... only by primes< 41 —> n < 63927525375
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Effective Approach: (Linear Forms of Logarithms)

C

B log logn

Problem: Can we narrow the gap between these
Ineffective and effective results?
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Want. Letpq,po2,...,pr De primes. There is alV =
N(0,p1,...,pr)suchthatifn > N and

n(n + 1) = pi'p5? .- pyrm
for some integefn, thenm > n?.

Theorem (Bennett, F., Trifonov): If n > 9 and

n(n+ 1) = 2F3tm,
then
m > nl/4,
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Conjecture: Forn > 512,
n(n+1) =2“3"m — m > V/n.

Comment:. The conjecture has been verified for
512 < n < 1019000,
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Main Idea: Find “small” integersP, (), and E such that
skp —2tQ = E
and
Qmq — Pmo # 0.
Then

ge (Qmq1 — Pm2) = £Q — Emea.

Obtain an upper bound o8*. Since3*m; > n, it
follows thatmy and, hencemm = mm+ are not small.
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The “small” integersP, Q, and E are obtained through
the use of Palapproximations fof1 — x)*.

More precisely, one takes = 1/9 in the equation

Pr(z) — (1 — 2)*Q,(x) = 2*>"T1E, ().
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One largely needs to be dealing with two primes (like
and 3) with a difference of powers of these primes bel
small (like3? — 23 = 1).
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e D. Hilbert (1892) used his now classical Hilbert’s Irre
ducibility Theorem to show that for each integer> 1,
there is polynomialf (x) € Z[x] such that the Galois
group associated witlfi(x) is the symmetric grouS,,.
He also showed the analogous result in the case of
alternating group,, .

e Hilbert’s work and work of E. Noether (1918) bega
what has come to be known as Inverse Galois Theon

e VVan der Waerden showed that for “almost all” polync
mials f(x) € Z|x], the Galois group associated wit
f(x) is the symmetric grouSy,.
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Galois groups associated with classical polynomials:

e Schur showech,,O)(w) has Galois group,.

e Schur showed;le)(w) has Galois groupi,, (the alter-
nating group) ifn is odd.
e Schur showed) — has Galois groupl, if 4|n.
. J
7=0

e Schur did not find an explicit sequence of polynomig
having Galois groupd,, with n = 2 (mod 4).
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The Ramanujan-Nagell equation:

Some Background: Beukers used a method “similar” tc
the approach for finding irrationality measures to show tl
v/2 cannot be approximated too well by rationalgb
with b a power of2. This implies bounds for solutions
to the Diophantine equatior® + D = 2™ with D fixed.
This led to him showing that ifD # 7, then the equa-
tion has at most solutions. Related independent wor
by Apery, Beukers, and Bennett establishes that for c
primesp not dividing D, the equation:? + D = p™ has
at most3 solutions. All of these are in some sense be
possible (though more can and has been said).
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Problem: If 2 +7 = 2"™m andz is not in the set above,
then can we say that, must be large?

Connection with n(n + 1) problem:

2+ 7 =2"m

2 2 2 2
T T T T

linear linear prime prime

N ) (=



Theorem (Bennett, F., Trifonov): If , n andm are pos-
itive integers satisfying

z?+7=2"m and z ¢ {1,3,5,11,181},

then
m > ?7?7
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Theorem (Bennett, F., Trifonov): If , n andm are pos-
itive integers satisfying
z?+7=2"m and z ¢ {1,3,5,11,181},

then
mZa:l/z.

Comment: In the case ofc? + 7 = 2™m, the difference

of the primes(1 + +/—7)/2 and(1 — /—7)/2 each
raised to thel 3t® power has absolute valwe 2.65 and
the powers themselves have absolute vatug0.51.
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Problem: Find@ = (k) as small as possible such tha
for  sufficiently large, the interva(z, = + «?] contains
a k-free number.

Main Idea: Show that there are integers (&, = + x9]
not divisible by thekt™ power of a prime. Consider prime:
In different size ranges. Deal with small primes and lar
primes separately.
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Problem: Find@ = (k) as small as possible such tha
for  sufficiently large, the interva(z, = + 2] contains
a k-free number.

Small Primes: p < z where z = z9\/Tog =

The number of integers € (x, « 4+ «?] divisible by such
ap® is bounded by

> (o) (£ D)o

p<z P p prime

2
T 2
< (—— 1>w9 < —:139.
_ 6 3
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Large Primes: p € (N,2N], N > z = z%/Togx

L 0 x r af
r<pm<zxt+r — _k<m§_k_|__
p p p

70

= [l <

where ||t|| = min{|t — £| : £ € Z}

Idea: Show that there are few integets € (IV, 2NN ]
with & /u*that close to an integer.
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u € (N,2N], N > z%/logx

Exponential Sums: Letd € (0,1/2). Letf: R — R
be any function. LeSS be a set of positive integers. The
for any positive integed < 1/(49), we get

[{u € S :||f(u)]| <o}

2

T ..
< e27r|]f(u)
e | S e
7.‘.2
+ S|

4(J + 1)



I
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k+1
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Differences:

|20 < 2o ] < 2
Nk’ (u + a)k Nk
£ €T _ arxr _ a

uk (u + a)k okt T L1/k

consider N = 2/, a < 21/(2K) 9 ~ 1/k
LHS small compared to RHS
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“Modified” Differences:
20 - 20

<_
Nk’ H(u+a)kH Nk

|2zl <

xr

—P — small (but not too small
LA e ( )
(u+ a)*P — «*Q small (but not too small)

a

u+ a

consider Pr(z) — (1 — 2)*Q,(2) with z =
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“Modified” Differences:

Theorem (Halberstam & Roth & Nair):
For  sufficiently large, there is &-free number in the
interval (x, x + wl/(zk)].
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u € (N,2N], N > z%/logx
Modified Differences plus Divided Differences:

Theorem (F. & Trifonov): For o sufficiently large, there
is a squarefree number {&,  + czl/5 log ).

Theorem (Trifonov): For x sufficiently large, there is a
k-free number in(z,  + cxl/(2k+1) 1og x].
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The method for obtaining results about gaps between
free numbers generalizes koefree values of polynomials.
Supposef(x) € Z|x] is irreducible andleg f = n. In
what follows, we suppose further thfithas no fixedkt™
power divisors.
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there is an integem such thatf (m) is k-free with

n
r < m< x+ cx2k—ntl,

Theorem:Letk > n + 1. Fora sufficiently large, there
IS an integermn such thatf (m) is k-free with

n
r < m< x+ cr2k—ntr,

wherer = v/2n — %
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a linear factor. As in the casg(x) = «, one wants to
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field) are not close by considering
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arising from Pad approximations. One uses that this e
pression is an integer and, hence, either > 1.
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Basic Idea: One works in a number field whey x) has
a linear factor. As in the casg(x) = «, one wants to
show certainu (in the ring of algebraic integers in the
field) are not close by considering

(u + a)fP — «FQ

arising from Pad approximations. One uses that this e
pression is an integer and, hence, either > 1.

Difficulty: An “integer” in this context can be small with-
out beingQ.

Solution: If it's small, work with a conjugate instead.
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one obtaingn € (x, x + h] wheref(m) is k-free buth
Increases ak decreases. There Is a point whérexceeds
x itself and the method fails (the size {m ) is no longer
of orderx™). Nair took the limit of what can be done witf
k < n and obtained
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Theorem (Nair): If f(a) is an irreducible polynomial of

degreen and k > (2v/2 — 1)n/2, then there are
infinitely many integersn for which f(m) is k-free.

Theorem:If f(x,y) is an irreducible binary form of de-

green and k > (24/2 — 1)n/4, then there are in-

finitely many integer pair¢a, b) for which f(a, b) is
k-free.
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The abc-conjecture:

Notation: Q(n) =[] p

pln

The abc-Conjecture: Fora andb in ZT, define
log(a + b)
La,b —
log Q(ab(a + b))

and
L={Lgsp:a>1,b>1,gcd(a,b) = 1}.
The set of limit points ofC is the interval[1/3, 1].
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B log(a + b)
- logQ(ab(a + b))

La,b

L={Lysp:a>1,b>1,gcd(a,b) =1}

Theorem: The set of limit points ofC includes the inter-
val [1/3,36/37].

(work of Browkin, Greaves, F., Nitaj, Schinzel)
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Approach: Makes use of a preliminary result about sque
free values of binary forms. In particular, for

f(z,y) = zy(z + y)(z — y)(z* + v*) (22 + y°) (2® + 29%)
% ($4 . w2y2 _|_ y4)(3w4 _|_ 3$2y2 _|_ y4)(w4 _I_ 3a:2y2 _|_ 3y4)

the numberf(x,y)/6 takes on the right proportion of
squarefree values for

X<zx<2X, Y<y<2Y, X =Y
wherea € (1, 3).



Polynomial Identity:



Polynomial Identity:

P3(z) — (1 — 2)'Q3(2) = 2" E3(2)
where
P3(z) = (22 — 1)(32% — 3z + 1),
Q3(z) = —(z +1)(z° + 2 + 1),
and

F3(z) = —(z — 2)(z? — 32+ 3)



Polynomial Identity:

Py(z) — (1 — 2)"Q3(z) = 2" E3(2)



Polynomial Identity:

Py(z) — (1 — 2)"Q3(z) = 2" E3(2)




Polynomial Identity:

Py(z) — (1 — 2)"Q3(z) = 2" E3(2)

- { (x+y) (z — y)(=® — zy + y°)
Z = —

n + y"(2z + y) (32* + 3zy + y°)
vy = &7 (z + 2y)(® + 3zy + 3y°)



(z +v) (z — y)(z? — zy + ¥?)
+y" (22 + y) (322 + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)



(z +v) (z — y)(z? — zy + ¥?)
+y" (22 + y) (322 + 3zy + y?)

= 2" (z + 2y)(z* + 3zy + 3y°)

(% + y*)"(z? — y*)(z* — 2%y® + y*)
+ y'(22® + y?) (32" + 32%y® + y?)
_ 51314(2132 + 2y2)(:134 + 33323/2 + 3y4)



(z +v) (z — y)(z? — zy + ¥?)
+y" (22 + y) (322 + 3zy + y?)

= z'(x + 2y)(z? + 3zy + 3y°)
(% + y*)"(z? — y*)(z* — 2%y® + y*)
+y' (2% + y*) (3z* + 32%y? + y*)
= 2! (x? 4 2¢%) (z* 4 32%y? + 3y")

f(z,y) = zy(z + y)(z — y)(=® + v°) (22* + v°) (® + 2¢7)
x (z* — 2*y* + y*) (3x* + 3x*y® + y*) (x* + 3%y® + 3y?)



(z +v) (z — y)(z? — zy + ¥?)
+y" (22 + y) (322 + 3zy + y?)

= z'(x + 2y)(z? + 3zy + 3y°)
(% + y?) (2 — y?) (2 — 2%y* + y*)
+ y'4(2z” + y?) (3z* + 3z%y” + )
= 2! (x? 4 2¢%) (z* 4 32%y? + 3y")

f(z,y) = zy(z + y)(z — y)(z* + v*) (22° + y*) (=* + 2¢?)
x (z* — 2*y* + y*) (3x* + 3x*y® + y*) (x* + 3%y® + 3y?)



(z +v) (z — y)(z? — zy + ¥?)
+y" (22 + y) (322 + 3zy + y?)

= z'(x + 2y)(x” + 3zy + 3y°)
(% + y?) (2 — y?) (2 — 2%y* + y*)
+y'*(22° + y?) (3z* + 32y + y*)
_ 3314(332 + 2y2)(w4 + 3332y2 + 3y4)

f(x,y) =zy(x + y)(z — y)(@® + y*) (22* + y*) («® + 2y°)
x (z* — 2*y* + y*) (3x* + 3x*y® + y*) (x* + 3%y® + 3y?)



a = (z? + y*)"(z? — y?)(z?* — 2? v > +yt)
b=yt (22? + y?) (3z* + 32%y? + y?)
X=Y% 1<a<3

a-+ b= :I:14(a:2 + 2y2)(w4 + 3w2y2 + 3y4)



a = (z°+y*) " (2® — y?)(z* — 2%y* + y*)
b= y'*(22% + y*) (32" + 3z°y* + y*)
X=Y% 1<a<3
a+b=a"(z® + 2y%) (z* + 3z%y* + 3y%)

f(z,y) = zy(z + y)(z — y)(z* + v*) (22° + y°) (2® + 29%)
% ($4 . m2y2 _|_ y4)(3:1:4 _|_ 321323/2 _|_ y4)(m4 _|_ 3:1:2y2 _|_ 3y4)



a = (2 4+ y*)"(z* — v*)(=* — 2%y’ + y*)
b=y'*(22° + y°) (32" 4 32%y® 4 y*)
X=Y% 1<a<3
a+ b =zt (x? + 29?%)(z?* + 32%y® + 3y?)

f(xy) = zy(z +y)(z — y)(z° + y*)(22° + y*) (z* + 2¢7)

X (z* — 2’y® + y*) (3z* + 32%y* + y*) (z* + 3z°y” + 3y*)
B log(a + b)
~ logQ(ab(a + b))

La,b



= (2132 1+ y2)7(a:2 . y2)(m4 . CBzy2 + y4)
b=y'*(22° + y°) (32" 4 32%y® 4 y*)
X=Y% 1<a<3

a+ b =zl (x? + 2¢y?) (=? + 32%y? + 3y?)
f(z,y) = zy(z + y)(z — y)(=* + y*) (22> + y°) (=® + 29°)

X (z* — 2’y® + y*) (3z* + 32%y* + y*) (z* + 3z°y” + 3y*)
B log(a + b)
o log Q(ab(a + b))

La,b



= (2132 1+ y2)7(a:2 . y2)(w4 . $2y2 + ,y4)
b=y'*(22° + y°) (32" 4 32%y® 4 y*)
X=Y% 1<a<3
a+ b =zt (x? + 29?%)(z?* + 32%y® + 3y?)
f(z,y) = zy(z + y)(z — y) (= + y*) (22* + y*) (=® + 2y7)
% (234 . m2y2 _|_ y4)(3:1:4 _|_ 3:1:2y2 _|_ y4)(m4 _|_ 3:1:2y2 _|_ 3y4)
B log(a + b) _ 20alogY
" log Q(ab(a + b))

La,b



a = (z +y*) " (x? — ) (z* — z°y” + y?)
b=y'*(22° + y°) (32" 4 32%y® 4 y*)
X=Y% 1<a<3
a+ b =zt (x? + 29?%)(z?* + 32%y® + 3y?)

f(z,y) = zy(z + y)(z — y) (= + y*) (22" + y°) (= + 2¢°)

x (! — x?y® + y*) (32" + 3x®y® + y*) (z* + 32°y* + 3y?)
B log(a + b) _ 20alogY
~ log Q(ab(a + b))

La,b



= (2132 1+ y2)7(a:2 . y2)(w4 . $2y2 + ,y4)
b= y'4(222 + y2) (32 + 32292 + y?)
X=Y% 1<a<3
a-+ b= :I:14(a:2 + 2y2)(w4 + 3w2y2 + 3y4)
f(z,y) = zy(z + y)(z — y)(z* + v*) (22° + y°) (2® + 29%)
X (z* — 2’y® + y*) (3z* + 32%y* + y*) (z* + 3z°y” + 3y*)
B log(a + b) _ 20alogY
 log Q(ab(a + b)) - (2laa+ 1) logY

La,b



a = (2 4+ y*)"(z* — v*)(=* — 2%y’ + y*)
b=y'*(22° + y°) (32" 4 32%y® 4 y*)
X=Y% 1<a<3
a+ b =zt (x? + 29?%)(z?* + 32%y® + 3y?)

f(z,y) = zy(z + y)(z — y)(=° + y*) (22° + y*)(=* + 2y7)

% (234 . m2y2 _|_ y4)(3:1:4 _|_ 3:1:2y2 _|_ y4)(m4 _|_ 3:1:2y2 _|_ 3y4)
B log(a + b) 20«
" logQ(ab(a+ b))  2la+1

La,b



log(a + b) 20«

Lgp= ~
“® " log Q(ab(a + b))  2la+ 1



log(a + b) 20«

Lgp= ~
“® " log Q(ab(a + b))  2la+ 1

I1<a<<3d3 —



log(a + b) 20«

Lgp= ~
“® " log Q(ab(a + b))  2la+ 1

1<a<3 = 22 <Lgp<??



log(a + b) 20«

Lgp= ~
“® " log Q(ab(a + b))  2la+ 1

l<ca<d — 27 ., 2
a —_ —_
11 0™ 16



P log(a + b) 20«
“® " log Q(ab(a + b))  2la+ 1
10 15

l<a<3 = — < Lgp<—
11 % ™ 16

Comment: This shows[10/11,15/16] is contained in
the set of limit points ofL, ;. A similar argument is given
for other subintervals of1 /3, 36/37] (not all involving
Padk approximations).
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