Lecture 9: The Polynomial $f(x)x^n + g(x)$

Theorem (Schinzel; F., Ford, Konyagin): Let f(x) and g(x) be in $\mathbb{Z}[x]$ with $f(0) \neq 0$, $g(0) \neq 0$, and $\gcd_{\mathbb{Z}}(f(x), g(x)) = 1$. Let r_1 and r_2 denote the number of non-zero terms in f(x) and g(x), respectively. If

$$n \geq 2 \max \left\{ 5^{2N-1}, \max \big\{ \deg f, \deg g \big\} \bigg(5^{N-1} + \frac{1}{4} \bigg) \right\} \quad \text{with} \quad N = 2 \Big(\|f\|^2 + \|g\|^2 + r_1 + r_2 \Big) - 7,$$

then the non-reciprocal part of $f(x)x^n + g(x)$ is irreducible or identically ± 1 unless one of the following holds:

- (i) The polynomial -f(x)g(x) is a pth power for some prime p dividing n.
- (ii) For either $\varepsilon = 1$ or $\varepsilon = -1$, one of $\varepsilon f(x)$ and $\varepsilon g(x)$ is a 4th power, the other is 4 times a 4th power, and n is divisible by 4.

Notation: For n a positive integer, $a \mod n$ is the unique integer b in $\{0, 1, \dots, n-1\}$ such that $a \equiv b \pmod{n}$. Also, ||x|| is the distance from x to its nearest integer.

Congruence Problem: Let a_1, a_2, \ldots, a_r denote distinct non-negative integers written in increasing order. Determine an integer $k \geq 2$ such that $a_j \mod k \in [0, k/4) \cup (3k/4, k)$ for each $j \in \{1, 2, \ldots, r\}$.

Comment: Clearly, $\exists k \leq 4a_r + 1$. For $\{5, 8\}$ and $\{20, 75, 138\}$, this is the minimum such k.

Actual Problem: Show that if a_r is large as a function of r, then the minimum such k is "small" (smaller than $4a_r + 1$).

Lemma: Let r be a positive integer, and let k_0 be a real number ≥ 2 . Set

$$A(r) = \max \left\{ 2 \times 5^{2r-1}, k_0 \left(5^{r-1} + \frac{1}{4} \right) \right\}.$$

Let a_1, a_2, \ldots, a_r be non-negative integers satisfying $a_1 < a_2 < \cdots < a_r$ and $a_r \ge A(r)$. Then there exists an integer $k \in [k_0, 4a_r/3)$ such that $a_j \mod k$ is in $[0, k/4) \cup (3k/4, k)$ for each j.

Main Ideas for Proof of Lemma:

- Define $x_j = a_j/a_r$ for $j \in \{1, 2, ..., r\}$.
- By the Dirichlet box principle, there is an integer d satisfying $1 \le d \le 5^{r-1}$ and $||dx_j|| \le 1/5$ for $1 \le j \le r-1$. Note that the same inequality holds for j=r.
- Since $a_r \ge 2 \times 5^{2r-1}$, we have $d \le \sqrt{a_r/10}$.
- For $1 \le j \le r$, let c_j denote the nearest integer to dx_j .
- First, suppose $c_j \neq 0$ (so that $c_j \geq 1$) for each $j \in \{1, 2, \dots, r\}$.

• For each $j \in \{1, 2, \dots, r\}, c_j \leq d$ implies

$$\frac{d+(1/5)}{d+(1/4)} \geq \frac{c_j+(1/5)}{c_j+(1/4)} \geq \frac{dx_j}{c_j+(1/4)} \quad \text{and} \quad \frac{d-(1/5)}{d-(1/4)} \leq \frac{c_j-(1/5)}{c_j-(1/4)} \leq \frac{dx_j}{c_j-(1/4)}.$$

- If $\frac{k}{a_r} \in \left(\frac{d + (1/5)}{d(d + (1/4))}, \frac{d (1/5)}{d(d (1/4))}\right) \subseteq \bigcap_{1 \le j \le r} \left(\frac{x_j}{c_j + (1/4)}, \frac{x_j}{c_j (1/4)}\right)$, then $|a_j c_j k| < k/4$ for $1 \le j \le r$.
- The first interval above has length $> 1/(10d^2) \ge 1/a_r$, so k exists. Justify $k_0 \le k < 4a_r/3$.
- If some $c_j = 0$, again choose k in the interval above. Now, $c_j = 0$ implies $|a_j| < k/4$ since $5da_j \le a_r < kd\left(d + \frac{1}{4}\right)/\left(d + \frac{1}{5}\right) \le 5dk/4$.

Main Ideas for Proof of Theorem:

- Assume the non-reciprocal part of $F(x) = f(x)x^n + g(x) = \sum_{j=0}^r a_j x^{d_j}$ is reducible. Then there are non-reciprocal polynomials u(x) and v(x) in $\mathbb{Z}[x]$ such that F(x) = u(x)v(x).
- Define $W(x)=u(x)\widetilde{v}(x)=\sum_{j=0}^s b_j x^{e_j}$ and note that $F(x)\widetilde{F}(x)=W(x)\widetilde{W}(x)$ and $\|W\|^2=\|F\|^2$ (so $s\leq \|F\|^2-1$).
- Define $T=\{d_1,d_2,\ldots,d_r\}\cup\{d_r-d_1,d_r-d_2,\ldots,d_r-d_{r-1}\}\cup\{e_1,e_2,\ldots,e_{s-1}\}\cup\{e_s-e_1,e_s-e_2,\ldots,e_s-e_{s-1}\}.$ Thus, $|T|\leq 2\,\|F\|^2+2r-5.$
- Let $k_0 = 2 \max\{\deg f, \deg g\}$. By the lemma, there is a $k \in [k_0, 4d_r/3]$ such that $t \mod k$ is in $[0, k/4) \cup (3k/4, k)$ for each $t \in T$.
- Define \overline{d}_j and ℓ_j by $\overline{d}_j = (d_j + [k/4]) \mod k$ and $d_j + [k/4] = k\ell_j + \overline{d}_j$.
- Set $G_1(x,y) = \sum_{j=0}^r a_j x^{\overline{d}_j} y^{\ell_j}$ so that $G_1(x,x^k) = x^{[k/4]} F(x)$. Similarly, define $G_2(x,y)$, $H_1(x,y)$, and $H_2(x,y)$ so that $G_2(x,x^k) = x^{[k/4]} \widetilde{F}(x)$, $H_1(x,x^k) = x^{[k/4]} \widetilde{W}(x)$, and $H_2(x,x^k) = x^{[k/4]} \widetilde{W}(x)$.
- Writing $G_1(x,y)G_2(x,y) = \sum_{j=0}^J g_j(x)y^j$, we deduce here that the terms in $g_j(x)$ correspond precisely to the terms in the expansion of $x^{2[k/4]}F(x)\widetilde{F}(x)$ having degrees in the interval [kj,k(j+1)). A similar conclusion holds for the terms in $H_1(x,y)H_2(x,y)$.
- Deduce $G_1(x,y)G_2(x,y) = H_1(x,y)H_2(x,y)$ and, consequently, $G_1(x,y)$ has a non-trivial irreducible factor other than x.
- Define ρ by $g(x) = \sum_{j=0}^{\rho} a_j x^{d_j}$ and $f(x) = \sum_{j=\rho+1}^{r} a_j x^{d_j-n}$.
- Observe that $\ell_0 = \ell_1 = \cdots = \ell_{\rho} = 0$ (since $d_j + [k/4] < k$ for $j \in \{0, 1, \dots, \rho\}$) and, for some ℓ , $\ell_{\rho+1} = \ell_{\rho+2} = \cdots = \ell_r = \ell$ (otherwise, $d_r d_{\rho+1} \ge \deg f$).
- Deduce $G_1(x,y) = f(x)x^dy^\ell + g(x)x^{d'}$ for some positive integer ℓ and some non-negative integers d and d'.
- Apply Capelli's theorem.