Lecture 2: Some Properties of 0, 1-**Polynomials**

Lemma 1: Suppose F(x) is a 0,1-polynomial and F(x) = u(x)v(x) where both u(x) and v(x) are non-reciprocal and have positive leading coefficients. Then the polynomial $w(x) = u(x)\tilde{v}(x)$ has the following properties:

- (i) $w \neq \pm F$ and $w \neq \pm F$.
- (ii) $w\widetilde{w} = F\widetilde{F}$.
- (iii) w(1) = F(1).
- (iv) ||w|| = ||F||.
- (v) w is a 0, 1-polynomial with the same number of non-zero terms as F.

Lemma 2: Let F(x) be a 0, 1-polynomial with F(0) = 1. Then the "non-reciprocal part" of F(x) is reducible if and only if w(x) exists satisfying (i)-(v) of Lemma 1.

Proof: Assume the non-reciprocal part of F(x) is reducible. Let a(x) be an irreducible non-reciprocal factor. If $\tilde{a}(x)$ divides F, write F(x) = u(x)v(x) where $\tilde{a}(x) \nmid u(x)$ and $a(x) \nmid v(x)$. If $\tilde{a}(x)$ does not divide F, consider an irreducible non-reciprocal b(x) such that a(x)b(x) divides F. If $\tilde{b}(x)$ divides F, write F(x) = u(x)v(x) where $\tilde{b}(x) \nmid u(x)$ and $b(x) \nmid v(x)$. If $\tilde{a}(x)$ and $\tilde{b}(x)$ do not divide F, write F(x) = u(x)v(x) where a(x)|u(x) and b(x)|v(x). In each case, u and v are non-reciprocal and we may take both u and v to have a positive leading coefficient. Lemma 1 now implies w(x) exists.

Now, suppose w(x) exists satisfying (i) and (ii) (note that this is all we need here), and we want to show the non-reciprocal part of F(x) is reducible. Assume the non-reciprocal part of F(x) is irreducible or ± 1 . Write F(x) = g(x)h(x) where each irreducible factor of g(x) (at most one) is non-reciprocal and each irreducible factor of h(x) is reciprocal. Note that

$$F\widetilde{F} = g\widetilde{g}h\widetilde{h} = \pm g\widetilde{g}h^2.$$

Now, g being irreducible or ± 1 and (ii) imply $w=\pm gh=\pm F$ or $w=\pm \tilde{g}h=\pm \tilde{F}$. In either case, we have a contradiction.

Theorem 1: Let F(x) be a reciprocal 0,1-polynomial. Then F(x) is not divisible by a non-reciprocal polynomial in $\mathbb{Z}[x]$.

Non-Example: $x^6 + x^5 + x^4 + 3x^3 + x^2 + x + 1 = (x^3 + x + 1)(x^3 + x^2 + 1)$

Proof of Theorem 1 (Chris Smyth's version):

- Observe that $\widetilde{F}(x) = F(x)$.
- Assume F(x) has a non-reciprocal factor q(x).
- Then also $\tilde{g}(x)$ is a factor of F(x).
- So F(x) can be written in the form given in Lemma 1 (by Lemma 2).
- Let w(x) be as in Lemma 1. Then $(F(x) w(x))(F(x) + \widetilde{w}(x)) = (\widetilde{w}(x) w(x))F(x)$.

• Compare the lowest degree non-zero terms on both sides.

Theorem 2: Let f(x) be an irreducible non-reciprocal 0,1-polynomial with f(0)=1. Then for each positive integer k, the polynomial $f(x^k)$ is irreducible.

Non-Examples:
$$x^2 + x + 1$$
 is irreducible but $x^4 + x^2 + 1 = (x^2 + x + 1)(x^2 - x + 1)$
 $x^2 + 4$ is irreducible but $x^4 + 4 = (x^2 + 2x + 2)(x^2 - 2x + 2)$

Open Problem: Maybe "non-reciprocal" can be replaced by "non-cyclotomic".

Proof of Theorem 2:

- Observe that β and $1/\beta$ cannot both be roots of f(x) (since f(x) is both irreducible and non-reciprocal).
- $f(x^k)$ cannot have both α and $1/\alpha$ as roots (otherwise take $\beta = \alpha^k$).
- Therefore, f(x) has no irreducible reciprocal factors.
- Assume $F(x) = f(x^k)$ is reducible.
- F(x) can be written in the form given in Lemma 1 (by Lemma 2).
- Let w(x) be as in Lemma 1. In particular, each coefficient of w(x) is positive and (ii) holds.
- Observe that each term in $F\widetilde{F}$ has exponent a multiple of k.
- Therefore, $w(x) = h(x^k)$ for some $h(x) \in \mathbb{Z}[x]$.
- Deduce $h(x)\tilde{h}(x) = f(x)\tilde{f}(x)$ so that $h(x) = \pm f(x)$ or $h(x) = \pm \tilde{f}(x)$. Hence, $w(x) = \pm F(x)$ or $w(x) = \pm \tilde{F}(x)$, a contradiction.

Capelli's Theorem: Discuss as time permits.

Theorem (Odlyzko & Poonen): Let f(x) be a 0,1-polynomial with constant term 1. Then each root α of f(x) satisfies:

- (i) $\alpha \notin [0, \infty)$.
- (ii) $Re(\alpha) < 1.22$.
- (iii) $\frac{1}{\phi} < |\alpha| < \phi$ where $\phi = (1 + \sqrt{5})/2$.
- (iv) If $|\alpha| < 0.7$, then $\alpha \in \mathbb{R}$.

Another Open Problem (Odlyzko and Poonen): If a 0, 1-polynomial has a root with multiplicity ≥ 2 , it is a root of unity.