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x ≡ 0 (mod 2)
x ≡ 2 (mod 3)
x ≡ 1 (mod 4)
x ≡ 1 (mod 6)
x ≡ 3 (mod 12)

x ≡ 0 (mod 2)
x ≡ 0 (mod 3)
x ≡ 1 (mod 4)
x ≡ 3 (mod 8)
x ≡ 7 (mod 12)
x ≡ 23 (mod 24)

A covering of the integers is a system of congruences

x ≡ aj (mod mj), j = 1, 2, . . . , r,

with aj and mj integral and with mj ≥ 1, such that
every integer satisfies at least one of the congruences.



Joint Work With: Kevin Ford, Sergei Konyagin,

Carl Pomerance and Gang Yu

Conjectures Concerning a Large Minimum Modulus

Question: Given c > 0, is there a covering using
only distinct moduli ≥ c ?

Erdős: This is perhaps my favourite problem.

Question: What conditions can we impose on the
moduli that would cause no covering to exist?



Conjecture 3 (Erdős and Graham): For any K > 1
and N sufficiently large, depending on K, there is
no covering system using distinct moduli from the
interval (N, KN ].

Conjecture 1 (Erdős and Selfridge): For any B,
there is an NB, such that in a covering system with
distinct moduli greater than NB, the sum of recip-
rocals of these moduli is greater than B.

Conjecture 2 (Erdős and Graham): For each K > 1,
there is a positive dK such that if N is sufficiently
large, depending on K, and we choose arbitrary in-
tegers r(n) for each n ∈ (N, KN ], then the com-
plement in Z of the union of the residue classes
r(n) (mod n) has density at least dK .



Conjecture 1 (Erdős and Selfridge): Fix B. If N is
sufficiently large and a covering consists of distinct
moduli m1, m2, . . . , mr each exceeding N , then

r∑

j=1

1

mj

> B.





x ≡ aj (mod mj) (1 ≤ j ≤ r)

Question: What is the density of integers which are
not covered by these congruences?

If the moduli are pairwise relatively prime, then the
density is

α =

r∏
j=1

(
1 −

1

mj

)
.

If the moduli are large, then on average the density
is ≈ α. By choosing the aj carefully, one can always
make the density ≤ α. By choosing the aj and mj

carefully, one can make the density much smaller
than α.



Then

α =

KN∏
m=N+1

(
1 −

1

m

)
=

KN∏
m=N+1

(
m − 1

m

)
=

1

K
.

Then

α =

KN∏
m=N+1

(
1 −

1

m

)
=

KN∏
m=N+1

(
m − 1

m

)

α =

r∏
j=1

(
1 −

1

mj

)

Suppose the set of moduli S = {m1, . . . , mr} is
(N, KN ] ∩ Z.

Then

α =

KN∏
m=N+1

(
1 −

1

m

)



Conjecture 2 (Erdős and Graham): For each K > 1,
there is a positive dK such that if N is sufficiently
large, depending on K, and we choose arbitrary in-
tegers r(n) for each n ∈ (N, KN ], then the com-
plement in Z of the union of the residue classes
r(n) (mod n) has density at least dK .





Notation:

α =

r∏
j=1

(
1 −

1

mj

)
β =

∑
i<j

gcd(mi,mj)>1

1

mimj



Notation:

α =

r∏
j=1

(
1 −

1

mj

)
β =

∑
i<j

gcd(mi,mj)>1

1

mimj

Rough Ideas:

• Recall we can make the density δ ≤ α.

• We show δ ≥ α − β.



α ≥ minimal density δ ≥ α − β

This can be used to give the following improvement
of a result of J. A. Haight (1979):



Notation:

α =

r∏
j=1

(
1 −

1

mj

)
β =

∑
i<j

gcd(mi,mj)>1

1

mimj

Rough Ideas:

• Recall we can make the density δ ≤ α.

• We show δ ≥ α − β.

• Split up the contribution from small primes
dividing the moduli and large primes.





Notation:

α =

r∏
j=1

(
1 −

1

mj

)
β =

∑
i<j

gcd(mi,mj)>1

1

mimj

Rough Ideas:

• Recall we can make the density δ ≤ α.

• We show δ ≥ α − β.

• Split up the contribution from small primes
dividing the moduli and large primes.

• Use δ(Ch) ≥ α(Ch) − β(Ch) and estimates for
α(Ch) and β(Ch).







x ≡ 1 (mod 2)
x ≡ 2 (mod 4)
x ≡ 4 (mod 8)
x ≡ 8 (mod 16)
x ≡ 16 (mod 32)
x ≡ 32 (mod 64)
x ≡ 0 (mod 64)

Sierpinski’s Argument:

Covering

←→ k ≡ 1 (mod 3)
←→ k ≡ 1 (mod 5)
←→ k ≡ 1 (mod 17)
←→ k ≡ 1 (mod 257)

←→ k ≡ 1 (mod 641)
←→ k ≡ 1 (mod 65537)

←→ k ≡ −1 (mod 6700417)

Apply the
Chinese Remainder Theorem

Theorem (W. Sierpinski): A positive proportion of
odd positive integers k satisfy k×2n+1 is composite
for all positive integers n.



Theorem (W. Sierpinski): A positive proportion of
odd positive integers k satisfy k×2n+1 is composite
for all positive integers n.

Sierpinski (1960): k = 15511380746462593381



k ≡ 2 (mod 3)
k ≡ 2 (mod 5)
k ≡ 9 (mod 73)
k ≡ 11 (mod 19)
k ≡ 6 (mod 37)
k ≡ 3 (mod 7)
k ≡ 11 (mod 13)

n ≡ 0 (mod 2)
n ≡ 1 (mod 4)
n ≡ 3 (mod 36)
n ≡ 15 (mod 36)
n ≡ 27 (mod 36)
n ≡ 7 (mod 12)
n ≡ 11 (mod 12)

Sierpinski (1960): k = 15511380746462593381

Selfridge (1962): k = 78557

Selfridge’s Argument:

k an odd positive integer, k × 2n + 1 composite ∀n



Unsolved Problems in Number Theory

by Richard Guy (Edition 2, Section F13)

Erdős conjectures that all sequences of the
form d · 2k + 1 (k = 1, 2, . . .), d fixed
and odd, which contain no primes can be
obtained from covering congruences . . . .
Equivalently, the least prime factors of
members of such sequences are bounded.



Probable Counterexample:

Sierpinski’s Congruences

k ≡ 1 (mod 3)
k ≡ 1 (mod 5)
k ≡ 1 (mod 17)
k ≡ 1 (mod 257)
k ≡ 1 (mod 65537)
k ≡ 1 (mod 641)
k ≡ −1 (mod 6700417)

! ≡ 1 (mod 3)

! ≡ 1 (mod 17)
! ≡ 1 (mod 257)
! ≡ 1 (mod 65537)
! ≡ 1 (mod 641)
! ≡ 28 (mod 6700417)

Counterexample

P = {3, 17, 257, 65537, 641, 6700417}

!4 ≡ k (mod p), ∀p ∈ P

Due to Anatoly Izotov, 1995.



some p ∈ P divides !4 ·2n +1 unless n ≡ 2 (mod 4)

n ≡ 2 (mod 4) =⇒ !
4

· 2n + 1 = 4x
4 + 1

4x
4 + 1 = (2x

2 + 2x + 1)(2x
2

− 2x + 1)

k ≡ 1 (mod 3)
k ≡ 1 (mod 5)
k ≡ 1 (mod 17)
k ≡ 1 (mod 257)
k ≡ 1 (mod 65537)
k ≡ 1 (mod 641)
k ≡ −1 (mod 6700417)

! ≡ 1 (mod 3)

! ≡ 1 (mod 17)
! ≡ 1 (mod 257)
! ≡ 1 (mod 65537)
! ≡ 1 (mod 641)
! ≡ 28 (mod 6700417)

P = {3, 17, 257, 65537, 641, 6700417}

!4 ≡ k (mod p), ∀p ∈ P

!4 · 2n + 1 ≡ k · 2n + 1 (mod p), ∀p ∈ P



k ≡ 1 (mod 3)
k ≡ 1 (mod 5)
k ≡ 1 (mod 17)
k ≡ 1 (mod 257)
k ≡ 1 (mod 65537)
k ≡ 1 (mod 641)
k ≡ −1 (mod 6700417)

! ≡ 1 (mod 3)

! ≡ 1 (mod 17)
! ≡ 1 (mod 257)
! ≡ 1 (mod 65537)
! ≡ 1 (mod 641)
! ≡ 28 (mod 6700417)

!
4

· 2n + 1 is composite for all positive integers n

Chinese Remainder Theorem implies

! ≡ 3479268342425187502

mod (3 · 17 · 257 · 65537 · 641 · 6700417)



Chinese Remainder Theorem implies

! ≡

mod (3 · 17 · 257 · 65537 · 641 · 6700417)

k ≡ 1 (mod 3)
k ≡ 1 (mod 5)
k ≡ 1 (mod 17)
k ≡ 1 (mod 257)
k ≡ 1 (mod 65537)
k ≡ 1 (mod 641)
k ≡ −1 (mod 6700417)

! ≡ 1 (mod 3)

! ≡ 1 (mod 17)
! ≡ 1 (mod 257)
! ≡ 1 (mod 65537)
! ≡ 1 (mod 641)
! ≡ 28 (mod 6700417)

!
4

· 2n + 1 is composite for all positive integers n

7168617157167097825



Remarks: Let ! ≡ 7168617157167097825 modulo

2 · 3 · 5 · 17 · 257 · 65537 · 641 · 6700417.

Then !4×2n+1 is composite for all positive n ∈ Z+.
Furthermore, the least prime divisor of !4 × 2n + 1

“appears” to be unbounded as n → ∞.



Remarks: Let ! ≡ 856437595 modulo

2 · 3 · 5 · 17 · 97 · 241 · 257 · 673.

Then !4×2n+1 is composite for all positive n ∈ Z+.
Furthermore, the least prime divisor of !4 × 2n + 1

“appears” to be unbounded as n → ∞.



Miscellaneous Remarks and Questions

Question: Is 78557 the smallest Sierpinski number?

Question: Is 4847 a Sierpinski number?

Question: Is 8564375954 the smallest example of a
Sierpinski number that “likely” cannot be obtained
from coverings?



Miscellaneous Remarks and Questions

Remark: The number 271129 is the second smallest

known Sierpinski number. It is a prime.

Question: Is 271129 the smallest prime that is a

Sierpinski number?

Question: Are there any prime Sierpinski numbers
that cannot be obtained from coverings? In other
words, if p is a prime and p · 2n +1 is composite for
all positive integers n, then is it the case that the
smallest prime factor of p · 2n + 1 is bounded as n

tends to infinity?



Miscellaneous Remarks and Questions

Definition: A Riesel number is an odd positive inte-
ger k for which k ·2n

−1 is composite for all positive
integers n.

Question: Is 509203 the smallest Riesel number?

Question: Is 2293 a Riesel number?

Definition: A Brier number is an odd positive inte-
ger k for which k ·2n ±1 is composite for all positive
integers n. In other words, a Brier number is an odd
positive integer for which k · 2n is not adjacent to a
prime for every positive integer n.

Question: Is 878503122374924101526292469 the least

Brier number?



Miscellaneous Remarks and Questions

Remark: An example of a Riesel number that “likely”
does not come from coverings is:

72020575363403300057727450518332057618721299479287667
2

Calling this example !2, we see that !22n
−1 is com-

posite whenever n is even. For odd n, a covering is
used with the 20 moduli

7, 17, 31, 41, 71, 97, 113, 127, 151, 241, 257,

281, 337, 641, 673, 1321, 14449, 29191,

65537, 6700417.



Miscellaneous Remarks and Questions

Question: What’s the smallest Riesel number that
is likely not obtainable from coverings?

Question: Are there examples of Brier numbers
that cannot be obtained from coverings?



Miscellaneous Remarks and Questions

Polignac’s Conjecture: For every sufficiently large
odd positive integer k, there is a prime p and an
integer n such that k = 2n + p.

Examples of odd k not as above are:

127, 149, 251, 331, 337, 373, 509

The first composite k > 1 as above is 905.



Miscellaneous Remarks and Questions

Polignac’s Conjecture: For every sufficiently large
odd positive integer k, there is a prime p and an
integer n such that k = 2n + p.

Erdős gave a construction of infinitely many such k

(not satisfying the conjecture above) by taking

k ≡ 1 (mod 2), k ≡ 1 (mod 3), k ≡ 2 (mod 5),

k ≡ 1 (mod 7), k ≡ 11 (mod 13),

k ≡ 8 (mod 17), k ≡ 121 (mod 241).



Miscellaneous Remarks and Questions

Unsolved Problems in Number Theory

by Richard Guy (Edition 1, Section F13)

Erdős also formulates the following conjec-
ture. Consider all the arithmetic progres-
sions of odd numbers, no term of which is
of the form 2k + p. Is it true that all these
progressions can be obtained from covering
congruences? Are there infinitely many in-
tegers, not of the form 2k + p, which are
not in such progressions?

Note: Switching notation, we want k with k − 2n

not prime for all positive integers n.



Claim: The example of the Riesel number !2 is a
likely counterexample for the 2nd Erdős conjecture.

Note: Switching notation, we want k with k − 2n

not prime for all positive integers n.

Miscellaneous Remarks and Questions

Idea: To get an example that is not derived from
a covering, take k = !2 and note that when n ≡ 0
(mod 2) the number k − 2n factors.



≡ !2
− 2n (mod p). !

Proof: If n is even, both !22n
−1 and !2

−2n factor
(one needs to check that each has two factors > 1).
For each odd n, the number !22n − 1 is divisible
by a prime from a fixed finite set S.

Let n be an arbitrary odd

number. There is a prime p ∈ S such that p divides

!22nm − 1. Then p divides

!
2
2

nm+n
− 2

n

Let P be the
product of the primes in S, and let m be a positive
odd integer for which 2m ≡ 2−1 (mod P ) (one can
take m = φ(P ) − 1).

Miscellaneous Remarks and Questions

Claim: The example of the Riesel number !2 is a
likely counterexample for the 2nd Erdős conjecture.



Miscellaneous Remarks and Questions

! ≡ 72020575363403300057727450518332057618721299479287667

(mod 2794789825832388197218264652184290186627445374409052562).

Question: Are there proofs that these apparent coun-

terexamples are in fact counterexamples?

Question: What is the smallest example of a num-
ber of the form 2n + p which does not lie in an
arithmetic progression arising from coverings?



Chen’s Conjecture: For each positive integer r, there
are infinitely many positive odd integers k such that
kr2n +1 has at least two distinct prime divisors for
all positive integers n.

Chen established that such k exist if r is odd or
both r ≡ 2 (mod 4) and 3 ! r.

Carrie Finch and Mark Kozek were given the task
of resolving the conjecture by possibly making use
of “partial coverings” (which Chen had not done).
We were able to resolve the conjecture, in the end

without using partial coverings.



• At least two distinct prime divisors follows from
any covering argument.

Some of what was involved:

• We may suppose that is big.r

Chen’s Conjecture: For each positive integer r, there
are infinitely many positive odd integers k such that
kr2n +1 has at least two distinct prime divisors for
all positive integers n.



The equation

kr2n + 1 = p
ej

j

can be rewritten in the form

Fix r. A covering produces k and a finite set

P = {p1, p2, . . . , pr}

of primes such that kr2n +1 is always divisible
by some prime from P.

• At least two distinct prime divisors follows from
any covering argument.

axr
− byr = 1,

which has finitely many solutions.



• At least two distinct prime divisors follows from
any covering argument.

Some of what was involved:

• We may suppose that is big.r

• Find a covering construction.



! = k
r

! ≡ 1 (mod p1)
! ≡ 1 (mod p2)
! ≡ 1 (mod p3)

.

.

.

.

.

.

! ≡ 1 (mod ps−1)
! ≡ 1 (mod ps)

plus more congruences

pj|
(
22

j−1

+ 1
)

“More” congruences are for covering n ≡ 0 (mod 2s).

• Find a covering construction.



• Find a covering construction.

Idea: Take q so that q ! r. Imagine s is
very large. Let p′

j be a primitive prime divi-

sor of 2q·2
s+1−j

− 1 for j ∈ {1, 2, . . . , q}. Create
“more” congruences modulo these p′

j’s to cover
n ≡ 0 (mod 2s).




