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ABSTRACT. For P 2 Z[x], let kPk denote the Euclidean norm of the coe�cient vector of

P . For an algebraic number �, with minimal polynomial A, de�ne the Euclidean norm of �

by

k�k = kkAk ;

where k is the smallest positive integer for which kA 2 Z[x]. De�ne the minimal Euclidean

norm of � by

k�k
min

= min
�
kPk : P 2Z[x]; P (�) = 0; P 6� 0

	
:

Given an algebraic number �, we show there exists a P 2 Z[x] with P (�) = 0 and kPk =

k�k
min

such that the degree of P is bounded above by an explicit function of deg �, k�k,

and k�k
min

. As a result, we are able to prove that both P and k�k
min

can be e�ectively

computed using a suitable search procedure. As an indication of the di�culties involved, we

show that the determination of P is equivalent to �nding a shortest nonzero vector in an

in�nite union of certain lattices. After introducing several techniques for reducing the search

space, a practical algorithm is presented which has been successful in computing k�k
min

provided the degree and Euclidean norm of � are both su�ciently small. We also obtain the

following unusual characterization of the roots of unity: An algebraic number � is a root of

unity if and only if the set

�
P : P 2Z[x]; P (�) = 0; P (0) 6= 0; kPk = k�k

min

	

contains in�nitely many polynomials. We show how to extend the above results to other lp

norms. Some related open problems are also discussed.
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x1 Introduction

Throughout this paper, let Z, Z+, Z[x], C , and C [x] denote the ring of integers, the

set of positive integers, the ring of univariate polynomials over Z, the �eld of complex

numbers, and the ring of univariate polynomials over C , respectively. If A 2 C [x] and

(1.1) A(x) =

dX
j=0

ajx
j = ad

dY
j=1

(x� �j);

de�ne the height, Euclidean norm, and Mahler measure of A by

H(A) = max
0�j�d

jaj j;

kAk =
� dX
j=0

jaj j2
�1=2

;

and

M(A) = jadj
dY

j=1

maxf1; j�j jg;

respectively. Sometimes elements of Z[x] will be referred to as integer polynomials. We

call an integer polynomial A(x) irreducible when it has no factors in Z[x] other than �A(x)
and �1.

Let � be an algebraic number, and let A be an irreducible polynomial in Z[x] of smallest

degree such that A(�) = 0. Therefore, if A(x) is as in (1.1), then aj 2 Z for j 2 f0; 1; : : : ; dg
and gcd(a0; a1; : : : ; ad) = 1. We de�ne the height, Euclidean norm, and Mahler measure

of � by H(�) = H(A), k�k = kAk, and M(�) = M(A), respectively. A function F (�) is

called e�ectively computable if there is an algorithm for computing F (�) from the degree

and coe�cients of A. If the real number � satis�es � � F (�), where F (�) is e�ectively

computable, we say that F (�) is an e�ective upper bound for � and that � is e�ectively

bounded above.

The central concern of this paper is �nding, among all nonzero integer polynomials which

vanish at �, a polynomial whose Euclidean norm is minimal. This extremal problem arose

in part from a desire to �nd succinct ways to represent algebraic numbers on a computer.

Indeed, it is easy to produce examples where the polynomial A has large Euclidean norm

while an obvious integer polynomial multiple of A has decidedly lower Euclidean norm.

For instance, a spectacular example of this decrease in Euclidean norms occurs when � is

a primitive pth root of unity for some prime p. Here A(x) =
Pp�1

n=0 x
n has Euclidean normp

p. On the other hand, (x� 1)A(x) = xp � 1 has Euclidean norm
p
2.

Suppose now that P 2 Z[x] is a solution to the above extremal problem. If degP is large

compared with kPk2, then P must be a sparse polynomial since the number of nonzero

terms in P is at most kPk2. This situation is in stark contrast to the analogous extremal
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problem in which minimal Euclidean norm is replaced by minimal height. For example,

when � is a primitive pth root of unity, the polynomial A(x) solves the minimal height

problem but has no sparseness whatsoever.

Motivated by such considerations we de�ne the minimal Euclidean norm of an algebraic

number � by

k�kmin = min
�
kPk : P 2 Z[x]; P (�) = 0; P 6� 0

	
:

For example, it is easy to see that

k�kmin = 1 () � = 0;

and

k�kmin =
p
2 () � is a root of unity.

Clearly, the function k�kmin is well de�ned on the algebraic numbers because a non-empty

set of positive square roots of natural numbers always has a least element. It should be

noted that k�kmin is not a norm on the one-dimensional vector space of algebraic numbers

de�ned over the �eld of algebraic numbers. In fact, we now show that all three of the

de�ning relations of a norm are not satis�ed. We have just noted that k0kmin 6= 0. Let

� =
p
2, so that k�kmin =

p
5 and k2�kmin =

p
65. Clearly,

k2�kmin 6= 2 k�kmin :

Furthermore,

k� + �kmin > k�kmin + k�kmin ;

and the triangle inequality fails as well.

With � and A as above, let P� denote the following set of polynomials:

(1.2) P� =
�
QA : Q 2 Z[x]; Q(0) 6= 0; kQAk = k�kmin

	
:

Note that


xkP

 = kPk for any k 2 Z+ and any P 2 Z[x]. Thus, from the perspective of

minimal Euclidean norms, we have excluded from P� those polynomials with arti�cially

high powers of x as factors. Furthermore, for any P 2 P�, it is easy to see that P must

have the form

(1.3) P (x) =

nX
j=1

cjx
dj ;

where 0 = d1 < � � � < dn = degP and cj 6= 0 for 1 � j � n.

It is convenient to note that the following useful inequalities, valid for any algebraic

number �, hold:

(1.4) M(�) � k�kmin � k�k :

The second inequality is trivial, while the �rst can be proved as follows. Let P 2 P�, so
that P = AQ for some Q 2 Z[x]. Noting that M(Q) � 1, we have

M(�) �M(A)M(Q) =M(P );
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since the Mahler measure is multiplicative. NowM(P ) � kPk by Landau's inequality (see,
e.g., [12]). Since kPk = k�kmin, the �rst inequality in (1.4) is true.

Given a nonzero algebraic number �, our goal in x2 is to prove the existence of a

P 2 P� such that the degree of P is bounded above by an explicit function of deg�, k�k,
and k�kmin. We �rst consider nonzero algebraic numbers with at least one conjugate not

on the unit circle. In this case, well-known properties of resultants are used to show in

Theorem 1 that if P 2 P�, then degP is bounded above by an explicit function of deg�

and k�kmin. Next we look at those algebraic numbers � which are roots of unity. In

this case, inequalities for the Euler �-function are used in Theorem 2 to show that there

exists a P 2 P� whose degree is bounded above by an explicit function of deg� alone.

Finally in x2, we consider those nonzero algebraic numbers � which are not roots of unity

but have either no conjugates inside the unit circle or have no conjugates outside the unit

circle. This time, results from the theory of linear recursive sequences are combined with

resultants to show in Theorem 3 that if P 2 P�, then degP is bounded by an explicit

constant depending only on deg�, k�k, and k�kmin.

In x3 we combine the results of Theorems 1, 2, and 3 to prove that if the polynomial

A(x) corresponding to an algebraic number � is known, then a P 2 P� can be e�ectively

computed. In this way, we prove in Theorem 4 that the minimal Euclidean norm of an

algebraic number is e�ectively computable. In x3 we use Theorems 1 and 3 to determine

those algebraic numbers � whose corresponding P� is �nite. In fact, in Theorem 5 we

obtain the following unusual characterization of the roots of unity: an algebraic number �

is a root of unity if and only if P� contains in�nitely many polynomials.

In x4 we consider the computation of minimal Euclidean norms in practice. An algorithm

for e�ectively computing k�kmin is presented which contains several techniques for reducing

the size of the search space needed to �nd a P 2 P�. For example, one key idea is to use

upper bounds, already obtained in Lemmas 1 and 2 of x2, for the gaps between the degrees
of successive monomials which make up a polynomial in P� of the form (1.3).

The algorithm in x4 has been used successfully to compute the minimal Euclidean norm

of certain algebraic numbers. A representative example is given in x5. As an indication

of the di�culties involved, we prove that the determination of a P 2 P� is equivalent to

�nding a shortest vector in an in�nite union of certain lattices. Thus it is not surprising

that the algorithm in x4 is feasible only when the degree and Euclidean norm of � are both

su�ciently small. The algorithm in x4 can be viewed as a search over plausible multiples

of A. We also discuss in x5 the possibility of searching over plausible multipliers of A. We

indicate how results on the reducibility of lacunary polynomials (due to Selmer, Ljunggren,

Jonassen, and Schinzel) can be used to reduce the search space in special situations.

Before continuing, we note that our results can be extended from the Euclidean norm

to other lp norms. For example, if A is a non-cyclotomic irreducible polynomial in Z[x],

then the methods of x2 imply that a multiple P of A in Z[x] of large degree and bounded

norm has the form P = g(x)xk + h(x) for some positive integer k and some g(x) and

h(x) in Z[x] satisfying deg h < k, A(x)jg(x), and A(x)jh(x). In other words, regardless of

the norm being used, if P is a multiple of A in Z[x] with P (0) 6= 0 and degP is large,

then there must exist a multiple of A in Z[x] having smaller norm than P . Alternatively,

we observe that the results obtained here can be generalized directly to other lp norms
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by taking advantage of well known inequalities for making comparisons between di�erent

norms (cf. [4, Theorems 16,19]).

x2 Preliminary Degree Bounds

The theorems proved in this section collectively provide an a�rmative answer to the

following question: If � is a nonzero algebraic number, does there exist a P 2 P� such

that the degree of P is bounded above by an explicit function of deg�, k�k, and k�kmin?

Recall that P� was de�ned in (1.2). First, however, we collect some useful facts concerning

reciprocal polynomials. For nonzero P 2 Z[x], de�ne the reciprocal polynomial P � of P

by

P �(x) = xdegPP (1=x) 2 Z[x]:

For all nonzero algebraic numbers, it is clear that

(2.1) P 2 P� =) P � 2 P1=�:

Furthermore, degP = degP � when P (0) 6= 0, kPk = kPk�, and M(P ) = M(P �). A

polynomial P is said to be a reciprocal polynomial if P = �P �, and an algebraic number

� is reciprocal if 1=� is a conjugate of �.

Besides helping prove Theorem 1, the lemma below will play an important role in x4 in
our practical algorithm for computing minimal Euclidean norms.

Lemma 1. Let � be a nonzero algebraic number, and let A(x) be an irreducible poly-

nomial in Z[x] of smallest possible degree with A(�) = 0. Write A(x) in the form (1.1).

Let P 2 P� have the form (1.3). If � has � � 1 conjugates inside the unit circle, then for

1 � J � n� 1,

(2.2) dJ+1 �
logM(�)

log
�
M(�)=ja0 j

� dJ +
log

�� nX
h=J+1

jchj
��� JX

i=1

jcij
�d���

log
�
M(�)=ja0 j

� :

If � has � � 1 conjugates outside the unit circle, then for 1 � J � n� 1,

(2.3) dn � dJ �
logM(�)

log
�
M(�)=jadj

� �dn � dJ+1

�
+

log

�� JX
h=1

jchj
��� nX

i=J+1

jcij
�d���

log
�
M(�)=jadj

� :

Proof. Suppose �rst that � has � � 1 conjugates inside the unit circle. For 1 � J � n� 1,

de�ne PJ by

PJ (x) =

JX
j=1

cjx
dj :
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Since P 2 P�, we know that k�kmin = kPk > kPJk. Hence, PJ and A must be relatively

prime. Let RJ denote the resultant of A and PJ . Using well-known properties of the

resultant, (see [19]) we have

1 � jRJ j = jadjdJ
dY

j=1

jPJ (�j)j

= jadjdJ
Y

j�jj<1

jP (�j)� PJ (�j)j
Y

j�kj�1

jPJ (�k)j

� jadjdJ
Y

j�jj<1

�
j�j jdJ+1

nX
h=J+1

jchj
� Y
j�kj�1

�
j�kjdJ

JX
i=1

jcij
�

=

� ja0j
M(�)

�dJ+1
M(�)dJ

� nX
h=J+1

jchj
��� JX

i=1

jcij
�d��

:

If A has no roots lying outside or on the unit circle, the empty product occurring above is

understood to equal 1. Noting that M(�) =M(1=�) and that the latter trivially exceeds

ja0j, inequality (2.2) follows.

Suppose next that � has � � 1 conjugates outside the unit circle. Then 1=� has � con-

jugates inside the unit circle. Apply inequality (2.2) to 1=� and the reciprocal polynomials

of A(x) and P (x). Using (2.1) and M(1=�) =M(�) we get inequality (2.3). �

Theorem 1. Let � be a nonzero algebraic number of degree d. Suppose at least one

conjugate of � does not lie on the unit circle. If P 2 P�, then

degP � 2d k�k2min

0
@ 2 log k�kmin

log
�
1 + 1=(2d(d�1)=2 k�k2dmin)

�
1
A
k�k2

min

:

Proof. De�ne A(x) as in Lemma 1. We can assume that P 2 P� has the form (1.3). We

�rst treat the case in which � has � � 1 conjugates inside the unit circle. Trivially, we

have for 1 � J � n� 1,

nX
h=J+1

jchj �
nX

h=J+1

jchj2 � k�k2min :

Similarly,
JX
i=1

jcij � k�k2min :

Hence, by (2.2) we have that

dJ+1 �
logM(�)

log(M(�)=ja0 j)
dJ +

2d log k�kmin

log(M(�)=ja0j)
:
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Using (1.4) we have

dJ+1 � CdJ + 2dC

where

C =
log k�kmin

log(M(�)=ja0j)
:

By induction on J and the fact that d1 = 0, we have

degP = dn � 2d

nX
j=1

Cj � 2dnCn:

Since n � k�k2min, we see at once that

degP � 2d k�k2min

�
log k�kmin

log(M(�)=ja0j)

�k�k2
min

:

Hence, to prove the theorem when � has a conjugate inside the unit circle, it su�ces to

show

(2.4) log(M(�)=ja0j) � 1=2 log
�
1 + 1

� �
2d(d�1)=2 k�k2dmin

��
:

By a relabeling of the conjugates, we can assume, without loss of generality, that j�j < 1.

Hence,

(2.5)

log(M(�)=ja0 j) = log(
Y

j�jj<1

1=j�j j)

� log(1=j�j)
= 1=2 log

�
1 + (1=j�j2 � 1)

�
:

Now if � 6= 1 is an algebraic number, we know from [16, equation (11.1)] that

j1 � �j > �2deg �M(�)
��1

:

Letting � = 1=j�j2 = 1=(��), an algebraic number of degree at most d(d � 1)=2, we see

that

(2.6)
1

j�j2 � 1 >

�
2d(d�1)=2M

�
1

�
� 1
�

���1

:

From [2, equation (M2)] we know that if � and 
 are algebraic numbers, then

M(�
) �M(�)deg 
M(
)deg �:
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Letting � = 1=� and 
 = 1=� yields

M
�
1
�
j�j2

�
�M(1=�)2d � k�k2dmin ;

using (1.4) and the fact that k�kmin = k1=�kmin. Thus from (2.6) we see that

1

j�j2 � 1 � 1

2d(d�1)=2 k�k2dmin

:

Using this inequality in (2.5) immediately gives (2.4). Thus, Theorem 1 is proved when �

has a conjugate lying inside the unit circle.

We now consider the remaining case for which � has � � 1 conjugates outside the unit

circle. Then 1=� has � conjugates inside the unit circle. Apply the result just proved

to 1=� and the reciprocals of A and P . Theorem 1 follows from (2.1) upon noting that

k1=�kmin = k�kmin and deg(1=�) = deg� = d. �

We now consider the case in which � is a root of unity. The next result is due to Loxton

and Van der Poorten ([20], Lemma 6).

Theorem 2. If � is a root of unity of degree d, then there exists an n � 4d log log 6d such

that xn � 1 2 P�.
Proof. We know there is an n 2 Z+ such that A(x) is simply the nth cyclotomic polynomial

�n(x). Furthermore, �n(x) divides x
n � 1 and d = �(n) where � is the Euler �-function.

Hence, to prove Theorem 2, it su�ces to show that

n � 4�(n) log log 6�(n):

This is easy to check by direct calculation if 1 � n � 100. For n > 100 it follows by some

easy manipulations of an inequality of Rosser and Schoenfeld [13, Theorem 15]. �

The next lemma, needed in the proof of Theorem 2, will also play an important role in

our practical algorithm for computing minimal Euclidean norms given in x4.
Lemma 2. Let � be a nonzero algebraic number, and let A(x) be an irreducible poly-

nomial in Z[x] of smallest possible degree with A(�) = 0. Write A(x) in the form (1.1).

Assume that � is not a root of unity. Let P 2 P� have the form (1.3). If � has no

conjugates inside the unit circle, then

(2.7) dJ+1 � dJ �
�
2

JX
j=1

jcj j
dX
i=1

1

j�iA0(�i)j
+ 1

�d
:

If � has no conjugates outside the unit circle, then

(2.8) dJ+1 � dJ �
�
2

nX
j=J+1

jcj j
dX
i=1

j�ijd�1

jA0(�i)j
+ 1

�d
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Proof. Since P 2 P� we have P (x) = Q(x)A(x) for some integer polynomial Q of the form

Q(x) =

mX
j=0

qjx
j

where q0 6= 0 and qm 6= 0. Also, let qj = 0 for j < 0 and j > m. As done in Lemma 1, �x

J with 1 � J < n and let

PJ (x) =

JX
j=1

cjx
dj :

Now, for all k such that dJ < k < dJ+1 we have

0 = a0qk + a1qk�1 + � � � + adqk�d

so that the sequence fqigdJ�d<i<dJ+1 is a linear recurrence sequence of order d. In order

to bound the elements of this sequence, write Q(x) = P (x)=A(x) and expand 1=A(x) in a

power series. Since all the roots of A(x) are distinct, for jxj < 1 � min
1�i�d

j�ij we have

Q(x) = P (x)

dX
j=1

� �1
�jA0(�j)

�
1

1� x=�j

= P (x)

1X
h=0

xh
dX

j=1

���hj
�jA0(�j)

=

1X
k=0

xk
X
i

di�k

ci

dX
j=1

���(k�di)
j

�jA0(�j)

=

1X
k=0

xk
dX

j=1

���kj
�jA0(�j)

X
i

di�k

ci�
di
j :

Thus,

qk =

dX
j=1

�PJ(�j)
�jA0(�j)

��kj (dJ � k < dJ+1)

and, since j�j j � 1 for all 1 � j � d,

(2.9) jqkj �
JX
i=1

jcij
dX

j=1

1

j�jA0(�j)j
(k < dJ+1):

Let BJ denote the right hand side of (2.9). Note that within the sequence fqigdJ�d<i<dJ+1
there are dJ+1�dJ contiguous subsequences of length d. And, there are at most (2BJ+1)d

distinct d-vectors hqk�d+1; : : : ; qki satisfying jqij � BJ for k � d+ 1 � i � k. Assume

(2.10) dJ+1 � dJ > (2BJ + 1)d:
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Inequality (2.10) implies that there are two d-vectors v1 = hqk1�d+1; : : : ; qk1i and v2 =

hqk2�d+1; : : : ; qk2i with dJ � k1 < k2 < dJ+1 such that v1 = v2. Thus, fqigk1�d<i<dJ+1 is
cyclic with cycle length ! � k2 � k1. Now, we can form an in�nite number of multipliers

Qt(x) such that Qt(x)A(x) 2 P�. This is done by splicing in t copies of the vector

hqdJ+1�!; : : : ; qdJ+1�1i into the coe�cient vector for Q between qdJ+1�1 and qdJ+1 . More

precisely, we have

Qt(x) =

dJ+1�!�1X
j=0

qjx
j +

� dJ+1�1X
j=dJ+1�!

qjx
j

��
1 + x! + � � � + x!t

�
+ x!t

dnX
j=dJ+1

qjx
j

and

Qt(x)A(x) =

JX
j=1

cjx
dj + x!t

nX
j=J+1

cjx
dj :

Note that

kQtAk = k�kmin

and �
Qt(x)�Q(x)

�
A(x) = (x!t � 1)

nX
j=J+1

cjx
dj :

There are no roots of unity among �1; : : : ; �d; therefore

A(x)

����
nX

j=J+1

cjx
dj :

This is a contradiction since 




nX

j=J+1

cjx
dj





 < kPk = k�kmin :

Hence the assumption (2.10) is false, and inequality (2.7) is proved.

Now, consider the case when � has no conjugate outside the unit circle. Since P 2 P�
and � 6= 0 we may appeal to (2.1). Apply inequality (2.7) to both P �(x) = xdegPP (1=x) 2
P1=� and to 1=�, which has degree d and norm k�k. Here, A�(x) = xdA(1=x) is an

irreducible polynomial in Z[x] of smallest degree having 1=� as a root. Note that

A�
0
(x) = dxd�1A(1=x)� xd�2A0(1=x)

Thus, for any conjugate 1=�i of 1=� we have

��A�0(1=�i)�� = ����(d�2)

i A0(�i)
��

and inequality (2.8) follows. �
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Theorem 3. Let � be a nonzero algebraic number of degree d. Assume that � is not

a root of unity. Suppose that either no conjugates of � lie outside the unit circle or no

conjugates of � lie inside the unit circle. If P 2 P�, then

(2.11) degP � 2ddd
2+d k�k2d+2

min k�k2d2�2d
:

Proof. We use the notation of Lemma 2. First, consider the case for which � has no

conjugates outside the unit circle. Arguing as in the proof of Theorem 1, inequality (2.8)

implies

dJ+1 � dJ �
�
2
�
k�k2min � 1

� dX
i=1

1

jA0(�i)j
+ 1

�d

for 1 � J � n � 1. Since all of the roots of A are distinct, A and A0 are relatively prime.

Let R denote the resultant of A and A0. Using a well-known resultant argument (see [19]

or [6, Proposition 1.6]), since j�ij � 1, we have

1 � jRj � djA0(�i)j kA0kd�1 kAkd�1
:

Since kA0k � d kAk, we have
1

jA0(�i)j
� dd k�k2d�2

which implies

dJ+1 � dJ �
�
2
�
k�k2min � 1

�
dd+1 k�k2d�2

+ 1
�d

(2.12)

� 2ddd
2+d k�k2dmin k�k

2d2�2d
:

Iterating this inequality on J and noting that n � k�k2min proves (2.11) in the case where

� has no conjugate outside the unit circle. For the case when � has no conjugate inside

the unit circle, we apply inequality (2.11) to 1=� by appealing to (2.1) and the result

follows. �

x3 Effective Computation of k�kmin

Having done so much preliminary work in x2, we are now in a position to give a relatively

simple proof of the the main result of this paper.

Theorem 4. If � is an algebraic number, then k�kmin is e�ectively computable.

Proof. Let A(x) be as in Lemma 1 and Lemma 2. We shall prove the theorem by showing

that a P 2 P� can be computed in �nite time given only a knowledge of the degree and

coe�cients of A. We �rst check if k�kmin = 1. This is easy to do because A(x) = x if

and only if k�kmin = 1. Of course if k�kmin = 1, we are done. Otherwise, note that

k�kmin =
p
2 if and only if � is a root of unity. If A(x) divides xj � 1 in Z[x] for some

j = 1; 2; : : : ; b4d log log 6dc, then k�kmin =
p
2, and we are done. Otherwise, by Theorem

11



2, k�kmin >
p
2. Next, successively let k = 3; 4; : : : ; k�k2 � 1. For each value of k, search

over the �nite set of polynomials P 2 Z[x] satisfying P (0) 6= 0, kPk2 = k and

degP � max

�
2dk

 
log k

log
�
1 + 1=(2d(d�1)=2kd)

�
!k

; 2ddd
2+dkd+1 k�k2d2�2d

�
:

By Theorems 1 and 3, the �rst such polynomial found such that AjP satis�es P 2 P�
and k�kmin = kPk =

p
k. If no such polynomial is found, then A 2 P� and k�kmin =

k�k. �

The main virtue of the algorithm occurring in the proof of Theorem 4 is its simplicity.

In x4 we shall suggest some techniques that can signi�cantly speed up performance, but

the resulting algorithm will be decidedly more complicated.

First, however, we determine those algebraic numbers � whose corresponding P� is

�nite. As we shall see in the following theorem, the solution to this problem gives rise to

an interesting characterization of the roots of unity.

Theorem 5. An algebraic number � is a root of unity if and only if P� contains in�nitely

many polynomials.

Proof. Suppose �rst that � is an nth root of unity. Then xjn � 1 belongs to P� for all

j 2 Z+. Hence P� contains in�nitely many polynomials. On the other hand, if � is a not

a root of unity, then � satis�es the hypotheses of at least one of Theorems 1 and 3. In

either case, if P 2 P�, then there are only �nitely many choices for degP . Furthermore,

kPk = k�kmin � k�k ;

so there are only �nitely many choices for kPk. Hence, P� contains �nitely many polyno-

mials. Theorem 5 is proved. �

x4 Computing Minimal Euclidean Norms in Practice

Let � be an algebraic number, and let A(x) be as in the introduction. Suppose that only

A(x) is known. Throughout this section we will be concerned with how best to calculate

k�kmin in practice. It should be noted that our approach contains several key observations

that can signi�cantly reduce the search space occurring in the proof of Theorem 4. In some

of the steps of this algorithm several options are available. The most notable di�erence

between certain options is the use of numerical approximations to the roots of A. It has

been shown by Sch�onhage [17] (or see [6]) that approximations to all of the roots of A can

be computed in time polynomial in degA, logH(A) and the number of bits needed. It is

possible, in each of the steps below, to entirely avoid these approximations, but they can

be used advantageously at times. In order to avoid cumbersome notations, we will use

�1; : : : ; �d to denote either the roots of A or su�ciently accurate approximations to the

roots of A. We shall give an indication of the accuracy required for each occasion in which

numerical approximations to the roots of A can be used.

Algorithm: MinEuclideanNorm

12



Input: A(x) =

dX
j=0

ajx
j = ad

dY
j=1

(x� �j) where A is an irreducible integer

polynomial with root �, and ad > 0

Output: P 2 P�

Step 1: If A is monomial or binomial.

If A(x) = adx
d + a0, then P = A. In other words, if the number of nonzero coe�cients

of any polynomial A is 2 or less, then k�kmin = k�k. This is easy to see from the general

fact that if

adx
d + � � � + a0

��cmxm + � � � + c0

where ad; a0; cm; c0 6= 0 and d;m > 0, then adjcm and a0jc0.
Step 2: Determine if k�kmin =

p
2.

Arguing as in the proof of Theorem 4, we need to decide if A is equal to �n, the n
th

cyclotomic polynomial, for some n � 3 (Step 1 accounts for n = 1; 2). Note �rst that if

d is odd, then A could not be cyclotomic because deg�n = �(n) is even for n � 3. Of

course, if A is cyclotomic, then it must satisfy jadj = ja0j = 1 and A(x) = �xdA(1=x), i.e.,
� is reciprocal and both � and 1=� are algebraic integers. Now, from Dobrowolski [3] we

know that if

max
1�i�d

j�ij < 1 +
log d

6d2
;

then � is a root of unity. Hence, using only O(log d) bits of accuracy in the roots, we

can determine if the j�ij are su�ciently close to 1 to force the �i to be roots of unity. If

A = ��n, then all the conjugates of � have the form e2�ia=n where (a; n) = 1. Thus, after

we determine that A = ��n, we can determine n by using that

n =
�
2�=min

�
j arg(�1)j; : : : ; j arg(�d)j

	�
:

These numerical calculations also require only O(log d) bits of accuracy in the roots. We

can then take P = xn � 1. Alternatively, once we have determined that � is a root of

unity, Theorem 2 implies that we can take P = xm � 1, where m = [4d log log(6d)]!, so

that n need not be determined.

A more elegant procedure to determine if A is cyclotomic is discussed in Bradford and

Davenport [1] using a \Grae�e" method. De�ne the Grae�e operator by

grae�e(A(x)) = g(x)2 � xh(x)2 where A(x) = g(x2) + xh(x2):

The roots of grae�e(A) are exactly the squares of the roots of A. Let A1 = grae�e(A). The

following three tests can be applied repeatedly (at most O(log d) iterations) to determine

if A is cyclotomic. If they fail, A is not cyclotomic. (1) If A1 = �A, then A is cyclotomic.

(2) If A1(x) = �A(�x), and A(�x) is cyclotomic, then A is cyclotomic. (3) If A1 = �A2
2,

where A2 is cyclotomic, then A is cyclotomic. This procedure does not determine n, but

methods for determining n are discussed in [1]. Of course, a straightforward algebraic

algorithm to determine n (and to determine if A is cyclotomic) is simply to trial divide

A(x) into xn � 1 (or compute gcd(A(x); xn � 1)) for all d < n � 4d log log 6d (using

Theorem 2).
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Step 3: Compute con�guration of conjugates.

In order to apply Lemma 1 e�ciently we need to know the location of the zeros with re-

spect to the unit circle. In order to use numerical approximations to the roots to determine

their location we need to know how much accuracy is required in order to di�erentiate j�j
from 1. From [16, equation (11.1)], if � 6= 1 is algebraic, then

j1� �j � 2� deg �M(�)�1:

Let � = �� = j�j2 . Since deg � � d(d� 1)=2, M(��) �M2d(�) (see [2, equation (M2)]),

and M(�) � k�k (see, e.g., [12]), we have��j�j2 � 1
�� � 2�d(d�1)=2 k�k�2d

:

Thus, j�j can be di�erentiated from 1 with only O(d2 logH(�)) bits of accuracy. Therefore,

using su�ciently accurate numerical approximations to the roots of A we can determine

�, the number of conjugates inside the unit circle; �, the number of conjugates outside the

unit circle; and s = d� �� �, the number of conjugates on the unit circle.

There are also several algebraic methods that can be used for computing � and � which

we will brie
y touch on. Recall that A is an irreducible integer polynomial and we can

assume, without loss of generality, that A(�1) 6= 0 by Step 1. This allows us to make

certain simpli�cations that cannot be made in general. First, consider the case in which

A is not a reciprocal polynomial. In this case, s = 0 and there is no root � of A such

that 1=� is also a root. Thus, the Schur-Cohn method (see [11, p. 204] or [2, p. 30])

is guaranteed to compute � (and �). Other methods are discussed in both [11] and [2],

where a method using the Grae�e transform is presented. The second case is when A is

a reciprocal polynomial. In this case, � = � = (d � s)=2 so all we need do is compute s,

the number of roots on the unit circle. One method to compute s is to form the resultant

R(x) of A(z) and z2� 2xz+1. Now, s is the number of real roots in [�1; 1] of R(x). This,
of course, can be computed using Sturm's rule (see [7] or [11]).

Step 4: Check if A has a binomial multiple.

Assume this to be the case and let

Q(x)A(x) = advx
d+m � a0u

where Q 2 Z[x] has degree m, and u and v are the absolute values of the constant and

leading coe�cients, respectively, in Q. First, this implies that j�1j = � � � = j�dj and so by

comparing the smallest root �1 with the largest root �d to the accuracy for which they

were computed, we can check if this can possibly be the case. This check can be skipped

if root approximations are not used. But, it must be the case that either � = d or � = d.

Recall that the product of all the roots of A has absolute value equal to ja0=adj and the

product of all the roots of Q has absolute value equal to u=v. Since Step 2 ruled out the

possibility that � is a root of unity, we know that ja0j 6= jadj and u 6= v. The roots of QA

all lie on the same circle with radius

(3.1)

����a0ad
����
1=d

=
�u
v

�1=m
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which immediately leads to

m =
d log(u=v)

log ja0=adj
:

We note that a20 + a2d 6= jjQAjj2 because this would imply u = v = 1, contradicting that

u 6= v. Thus, we simply search over all (u; v) 2 Z
+�Z+ such that a20 + a2d < kQAk2 =

a20u
2 + a2dv

2 < kAk2 and such that there exists a positive integer m satisfying (3.1).

Two obvious observations that can be made are if k is a putative value for kQAk2 then

gcd(a20; a
2
d)jk, and (u; v) must also pass the test that each of A(1) and A(�1) divides one of

adv+a0u and adv�a0u. For every such (u; v) we check if A divides either advx
d+m+a0u

or advx
d+m � a0u. If a binomial multiple is found, then we can only claim that k�kmin �

kQAk which can be used in the steps below.

Step 5: Search for a P 2 P�.
Similar to the proof of Theorem 4, we shall �x k and search over all P 2 Z[x] of the

form (1.3) satisfying kPk2 = k and conditions governed by either Lemma 1, Theorem 1,

Lemma 2, or Theorem 3. The decision between the lemmas and the theorems is based

on whether or not approximations (to �i or M(�)) are to be used. The decision between

Lemma 1/Theorem 1 versus Lemma 2/Theorem 3 is based on the following criteria depend-

ing on the computations made in Step 3. We assume that approximations are available. If

jadj = 1 or ja0j = 1 (� or 1=� is an algebraic integer), then use Lemma 1 since the multi-

plicative factor in either (2.2) or (2.3) is 1 and the resulting bound on dJ+1 � dJ is almost

certainly better than Lemma 2 in the chance that it could be used. If s = d, then only

Lemma 2 is applicable. If � 6= 0 and � 6= 0, then use Lemma 1. Lastly, if s 6= d and either

� = 0 or � = 0, then we can use either Lemma 1 or Lemma 2 (or both simultaneously).

For a discussion of computing A0(�i) in Lemma 2 see [6, Lemma 1.5].

In order to use Lemma 1 we need to compute upper and lower bounds for M(�) and be

able to distinguishM(�)=ja0j andM(�)=jadj from 1. This is a straightforward computation

given approximations to the roots of A. But, (2.4) implies that O(d2) bits of accuracy

might be required. On the other hand, good approximations to M(�) can be had without

direct computation of the roots. An elegant method using the Grae�e transform is as

follows. Let A0 = A and Am+1 = grae�e(Am). Note that M(Am) = M(A)2
m

and

M(Am) � kAkm � 2dM(Am). Thus, as stated in [2, Proposition 1], we have

2�d2
�m kAmk2

�m

�M(�) � kAmk2
�m

:

Other methods for computing M(�) are also discussed in [2]. An easy special case is when

one of �, �, or s is equal to d. Then, M(�) = maxfja0j; jadjg.
We now would like to give one possible way of partitioning the search space. We will

assume that we are in a situation in which both (2.2) and (2.3) apply. Other cases are

similar and somewhat simpler. (1) Loop over integers k from maxfa20 + a2d + 1;M2(�)g
to k�k2 � 1 (or a20u

2 + a2dv
2 � 1 if a binomial multiple was found in Step 4 and a20u

2 +

a2dv
2 < k�k2). Here, we assume that k = k�k2min and if P 2 P�, then P = QA for some

integer polynomial Q. Since P has the form (1.3), adjcn, a0jc1. We have already seen in

Step 4 that if P 6= A, then P 6= adx
d+m � a0. Hence, we have k � a20 + a2d + 1. Also,
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M(�) � M(Q)M(A) = M(P ) � kPk =
p
k. (2) Loop over integers r from a20 + a2d to

k � 1 in steps of gcd(a20; a
2
d). Here, r denotes c21 + c2n = a20u

2 + a2dv
2 where u and v are

the constant and leading coe�cients, respectively, of Q in P = QA. (3) Loop over all

pairs (u; v) 2 Z
+�Z+ satisfying a20u

2 + a2dv
2 = r. (4) Loop over all square partitions

fs2; : : : ; sn�1g of k � r, i.e., s22 + � � � + s2n�1 = k � r where sj 2 Z
+. (5) Loop over all

distinct permutations (�2; : : : ; �n�1) of the square partition fs2; : : : ; sn�1g. (6) Loop over

the 2n�1 sign combinations (�1; : : : ; �n�1) where �j = �1. Now, set

(c1; c2; : : : ; cn�1; cn) = (�1ua0; �2�2; : : : ; �n�1�n�1; vad);

which is the vector of nonzero coe�cients of P as in (1.3). Before searching over possible

degree sequences (the degrees of the monomials in P ), we can perform a test indepen-

dent of the degree sequence. Proceed only if A(1)jPn
j=1 cj. Indeed if jA(�1)j > jA(1)j,

then we should perform the entire algorithm with �� and A(�x) since P (x) 2 P� if and

only if P (�x) 2 P��. (7) Loop over all degree sequences (d1; : : : ; dn) satisfying (2.2) and

(2.3) simultaneously (we assumed they both apply). We can work from \both ends" of

(d1; : : : ; dn), meeting in the middle, in order to minimize the accumulation of the mul-

tiplicative factors in the inequalities. Another method, assuming that an approximation

to � is available, is work with only one of the inequalities, (2.2) say, depending on which

has the smallest multiplicative factor. Then, loop over degree sequences (d1; : : : ; dn�1),

and let dn equal the integer nearest to log jR(�)=cnj= log j�j, where R(x) =
Pn�1

j=1 cjx
dj .

(8) If dn satis�es both dn > d and (2.2), check by trial division to see if A(x) divides

P (x) =
Pn

j=1 cjx
dj . If so, then P 2 P� and k�kmin =

p
k. If no such P is found during

this combinatorial search procedure, then k�kmin = k�k and A 2 P�.

x5 Conclusions and Connections

The algorithm in x4 has been used to successfully compute the minimal Euclidean norm

of certain algebraic numbers. For example, let � be a root of the irreducible integer

polynomial

B(x) = x9 � x8 + x7 � x6 + x5 � x4 + x3 � x2 + 2x� 1;

so that k�k =
p
13. It is easy to see that k�kmin �

p
4 by considering (x + 1)B(x).

Since B(x) has a real root between 0 and 1, B(x) is not cyclotomic and k�kmin 6=
p
2. In

the absence of further argument, one would be compelled to continue searching for other

elements P 2 P� satisfying kPkmin =
p
3. However, such a search would be fruitless and

never terminate because an implementation of the algorithm in x4 certi�ed that k�kmin =p
4 and that

(x+ 1)B(x) = x10 + x2 + x� 1 2 P� :
Suppose now that � is an algebraic number with A(x) as in the introduction. Motivated

by the preceding example, it is worth noting, as an indication of the di�culties involved,

that the determination of a P 2 P� yields a shortest nonzero vector in an in�nite union

of certain lattices. Indeed, if v and w are in C n , let v � w denote the dot product of v and

w. Given any subset W of C n , we let

W? =
�
v 2 C n : v � w = 0 8 w 2 W

	
:
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If � is algebraic, consider the lattice Ln de�ned by

Ln =
�
(1; �; �2 ; : : : ; �n�1)

	? \Zn:
Then a polynomial P 2 Z[x] satis�es both

P (�) = 0 and kPk = k�kmin

if and only if the coe�cient vector of P is a shortest nonzero vector in [1n=1Ln. In light

of such di�culties, it is not surprising that the algorithm in x4 is not feasible unless the

degree and Euclidean norm of � are both su�ciently small. In fact, even when � is an

algebraic integer and Lemma 1 is used to bound the number of plausible multiples of A,

it is easy to see that the number of elements in the search space is at least exponential in

k�k2, provided k�kmin = k�k.
The algorithm in x4 can be thought of as a \search-over-multiples" approach in that we

exhaust over plausible multiples of A for one of least Euclidean norm. However, there is

also the possibility of a \search-over-multipliers" approach. Here we search over plausible

polynomial multipliers of A for one which, when multiplied with A, yields an element of

P�. We shall now show that the \search-over-multipliers" approach has a �nite search

space of plausible multipliers. Suppose that Q 2 Z[x] is any multiplier of A for which

kQAk = k�kmin. An upper bound, say D(�), on degQ follows immediately from Theorems

1-3. Furthermore, using a result of Mignotte [12, Theorem 2], we know that

jqj j �
�
degQ

j

�
k�kmin �

�
D(�)

j

�
k�kmin ;

where Q(x) =
PdegQ

j=0 qjx
j . At �rst glance, the \search-over-multipliers" approach sounds

more appealing than the \search-over-multiples" approach because each multiplier requires

a polynomial multiplication operation, while each plausible multiple requires a polynomial

division operation. However, there are usually signi�cantly more multipliers to search over

than multiples. Also, Lemmas 1 and 2 can be used in the \search-over-multiples" approach

to drastically cut down the number of multiples. These savings do not seem possible in

the \search-over-multipliers" approach outlined above.

Nonetheless, in special situations, known results on the reducibility of lacunary integer

polynomials can be used to reduce the search space occurring in the algorithm in x4. As
an example, let q be an odd prime and let �1, �2, and �3 take the values �1. Suppose we
are checking to see if k�k2min = 3 + q2 by determining if a polynomial of the form

(5.1) P (x) = xd3 + �1x
d2 + �2x

d1 + �3q

belongs to P�. If q > 3, then there is no further work to be done because Ljunggren [10]

has shown that any P of the form (5.1) is irreducible. If q = 3, then Ljunggren [10] proved

that any P of the form (5.1) is either irreducible or the product of an irreducible integer

polynomial and a polynomial of the form xj � 1 for some j 2 Z
+. It is easy to see that

such severe constraints on the factors of P can sometimes be used to drastically reduce the

number of plausible multiples of A that need to be considered. Other relevant results on

the reducibility of lacunary integer polynomials can be found in the the papers of Selmer

[18]; Ljunggren [9], [10]; Jonassen [5]; and Schinzel [14], [15]. We note that the second

paper of Schinzel's is in fact the �rst in his monumental series of 11 papers on the subject

of lacunary integer polynomials.
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