
ON THE IRREDUCIBILITY OF THE

GENERALIZED LAGUERREPOLYNOMIALS

M. Filaseta1 and T.-Y. Lam

June 10, 2001

1The author gratefully acknowledges support from the National Security Agency.



1 Introduction

The generalized Laguerre polynomials are defined by

L(α)
m (x) =

m∑
j=0

(m + α)(m− 1 + α) · · · (j + 1 + α)(−x)j

(m− j)!j!
,

wherem is a positive integer andα is an arbitrary complex number. In 1929,
I. Schur [4] established the irreducibility over the rationals ofL

(0)
m (x), the classical

Laguerre polynomials, for everym. In 1931, I. Schur [5] consideredL(α)
m (x) in

general and showed thatL
(1)
m (x) is irreducible over the rationals for everym. The

caseα 6∈ {0, 1} remained open. The purpose of this paper is to establish the
following:

Theorem 1. Let α be a rational number which is not a negative integer. Then
for all but finitely many positive integersm, the polynomialL(α)

m (x) is irreducible
over the rationals.

Before going to the proof, it is worth noting that reducibleL
(α)
m (x) do exist

even withα = 2. In particular, we give the following examples:

L
(2)
2 (x) =

1

2
(x− 2)(x− 6)

L
(23)
2 (x) =

1

2
(x− 20)(x− 30)

L
(23)
4 (x) =

1

24
(x− 30)(x3 − 78x2 + 1872x− 14040)

L
(12/5)
4 (x) =

1

15000
(25x2 − 420x + 1224)(25x2 − 220x + 264)

L
(39/5)
5 (x) =

−1

375000
(5x− 84)

(
625x4 − 29500x3

+ 448400x2 − 2662080x + 5233536
)
.

It is not difficult to show that in fact there are infinitely many positive integersα

for whichL
(α)
2 (x) is reducible (a product of two linear polynomials).

Theorem 1 is a direct consequence of the following more general result:
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Theorem 2. Letα be a rational number which is not a negative integer. Then for
all but finitely many positive integersm, the polynomial

m∑
j=0

aj
(m + α)(m− 1 + α) · · · (j + 1 + α)xj

(m− j)!j!

is irreducible over the rationals provided only thataj ∈ Z for 0 ≤ j ≤ m and
|a0| = |am| = 1.

I. Schur obtained his irreducibility results forL
(0)
m (x) andL

(1)
m (x) through general

results similar to the above (except also for allm ≥ 1). Recent work of a similar
nature has been done by Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note
also that the above results can be made effective so that for any fixedα ∈ Q it
is possible to determine a finite setS = S(α) of m such that the polynomial in
Theorem 2 is irreducible (foraj as stated there) providedm 6∈ S.

2 A Proof of Theorem 2

For a primep and a non-zero integera, we defineν(a) = νp(a) = e wherepe||a.
We setν(0) = +∞. We define the Newton polygon of a polynomialf(x) =∑n

j=0 ajx
j with respect to a primep, whereana0 6= 0 as the lower convex hull

of the points(j, ν(an−j)). Thus, the slopes of the edges of the Newton polygon
of f(x) with respect top are increasing from left to right. We begin with the
following preliminary results.

Lemma 1. Letk and` be integers withk > ` ≥ 0. Supposeg(x) =
∑n

j=0 bjx
j ∈

Z[x] andp is a prime such thatp - bn, p|bj for all j ∈ {0, 1, . . . , n − ` − 1}, and
the right-most edge of the Newton polygon forg(x) with respect top has slope
< 1/k. Then for any integersa0, a1, . . . , an with |a0| = |an| = 1, the polynomial
f(x) =

∑n
j=0 ajbjx

j cannot have a factor with degree in the interval[` + 1, k].

Lemma 2. Leta, b, c andd be integers withbc− ad 6= 0. Then the largest prime
factor of(am + b)(cm + d) tends to infinity as the integerm tends to infinity.

Lemma 1 is given as Lemma 2 in [1]. Lemma 2 above is a fairly easy con-
sequence of the fact that the Thué equationux3 − vy3 = w has finitely many
solutions in integersx andy whereu, v, andw are fixed integers withw 6= 0. It
also immediately follows from Corollary 1.2 of [6]. We omit the proofs.
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Fix α now as in Theorem 2. Throughout the argument we suppose as we may
thatm is large. Define

cj =

(
m

j

)
(m + α)(m− 1 + α) · · · (j + 1 + α) for 0 ≤ j ≤ m.

We want to show that for all but finitely many positive integersm, the polyno-
mial f(x) =

∑m
j=0 ajcjx

j is irreducible over the rationals, whereaj are arbitrary
integers with|a0| = |an| = 1. Motivated by Lemma 1, we consider instead
g(x) =

∑m
j=0 cjx

j. Let u andv be relatively prime integers withv > 0 such
thatα = u/v. The condition thatα is not a negative integer implies that for each
j ∈ {0, 1, . . . ,m − 1}, m − j + α and, hence,v(m − j) + u cannot be zero.
We assume thatg(x) has a factor inZ[x] of degreek ∈ [1, m/2] and establish the
theorem by obtaining a contradiction to Lemma 1. We divide the argument into
cases depending on the size ofk.

Case 1.k > m/ log2 m.
For a andb integers withb > 0, let π(x; b, a) denote the number of primes

≤ x which are≡ a (mod b). Then the Prime Number Theorem for Arithmetic
Progressions implies that ifgcd(a, b) = 1, then

π(x; b, a) =
1

φ(b)

∫ x

2

dt

log t
+ O

(
x

log4 x

)
=

1

φ(b)

(
x

log x
+

x

log2 x
+

2x

log3 x
+ O

(
x

log4 x

))
.

By consideringπ(x; b, a) − π(x − h; b, a), it follows that fora andb fixed, the
interval (x − h, x] contains a prime≡ a (mod b) if h = x/(2 log2 x) and if x is
sufficiently large. Takinga = u, b = v, andx = vm+u, we deduce that for some
integerj ∈ [0, k), the numberv(m − j) + u is prime. Call such a primep, and
observe thatp ≥ 2vm/3 (sincev is a positive integer andm is large). We deduce
thatp does not dividev. Observe that

c` =

(
m

`

)
(vm + u)(v(m− 1) + u) · · · (v(` + 1) + u)

vm−`
for 0 ≤ ` ≤ m.

For j ∈ {0, 1, . . . , k − 1}, the numbersv(m− j) + u appear in the numerator of
the fraction on the right-hand side above whenever0 ≤ ` ≤ m− k. Therefore,

νp(c`) ≥ 1 for 0 ≤ ` ≤ m− k. (1)
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Sincecm = ±1, νp(cm) = 0. To obtain a contradiction from Lemma 1 for the case
under consideration, we show thatνp(c0) = 1; the contradiction will be achieved
since then it will follow that the right-most edge of the Newton polygon ofg(x)
with respect top has slope< 1/(m − k) < 1/k. Recall thatp - v and that
p ≥ 2vm/3. Forj ∈ {0, 1, . . . ,m− 1}, we deduce the inequality

2p > vm + u ≥ v(m− j) + u ≥ v + u > −p.

The condition thatα is not a negative integer implies that none ofv(m−j)+u can
be zero. Hence,p itself is the only multiple ofp among the numbersv(m− j)+u
with 0 ≤ j ≤ m − 1. Sincec0 = (vm + u)(v(m − 1) + u) · · · (v + u)/vm, we
obtainνp(c0) = 1.

Case 2.k0 ≤ k ≤ m/ log2 m with k0 = k0(u, v) a sufficiently large integer.
Let z = k(log log k)1/2. We first show that there is a primep > z that divides

v(m− j) + u for somej ∈ {0, 1, . . . , k − 1}. Then (1) follows as before, and we
will obtain a contradiction to Lemma 1 by showing that the right-most edge of the
Newton polygon ofg(x) with respect top has slope< 1/k.

Let
T = {v(m− j) + u : 0 ≤ j ≤ k − 1}.

Sincem is large, we deduce that the elements ofT are each≥ m/2. Also, observe
thatgcd(u, v) = 1 implies that each element ofT is relatively prime tov. For each
primep ≤ z, we consider an elementap = v(m− j)+u ∈ T with νp(ap) as large
as possible. We let

S = T − {ap : p - v, p ≤ z}.

By the Prime Number Theorem,

π(z) ≤ 2k(log log k)1/2

log k
.

We combine this estimate momentarily with|S| ≥ k−π(z). Sincek ≤ m/ log2 m,
we obtainm ≥ k log2 k. Consider a primep ≤ z with p not dividingv, and let
r = νp(ap). By the definition ofap, if j > r, then there are no multiples ofpj in
T (and, hence, inS). For1 ≤ j ≤ r, there are≤ [k/pj] + 1 multiples ofpj in T
and, hence, at most[k/pj] multiples ofpj in S. Therefore,

νp

(∏
s∈S

s

)
≤

r∑
j=1

[
k

pj

]
≤ νp(k!),
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and ∏
s∈S

∏
p≤z

pνp(s) ≤ k! ≤ kk.

On the other hand,

∏
s∈S

s ≥
(m

2

)|S|
≥
(

k log2 k

2

)k−π(z)

.

Recalling our bound onπ(z), we obtain

log
(∏

s∈S

s
)
≥ (k − π(z))

(
log k + 2 log log k − log 2

)
≥
(

k − 2k
√

log log k

log k

)(
log k + 2 log log k − log 2

)
≥ k log k + 2k log log k + O

(
k
√

log log k
)
.

Sincek ≥ k0 wherek0 is sufficiently large,

log
(∏

s∈S

s
)

> k log k ≥ log
(∏

s∈S

∏
p≤z

pνp(s)
)
.

It follows that there is a primep > z that divides some element ofS and, hence,
divides some element ofT .

Fix a primep > z that divides an element inT , and letν = νp. The right-most
edge of the Newton polygon ofg(x) with respect top is

max
1≤j≤m

{
ν(c0)− ν(cj)

j

}
.

Fix j ∈ {1, 2, . . . ,m}. To complete the case under consideration, we want to
show that the fraction above is< 1/k. Observe that

ν(c0)− ν(cj) ≤ ν ((vj + u)(v(j − 1) + u) · · · (v + u))

≤ ν((vj + |u|)!) =
∞∑

j=1

[
vj + |u|

pj

]

<

∞∑
j=1

vj + |u|
pj

=
vj + |u|
p− 1

.
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Sincep > z = k(log log k)1/2 andk ≥ k0, we easily deduce that the right-most
edge of the Newton polygon ofg(x) with respect top has slope< 1/k as desired.
Hence, as indicated at the beginning of this case, we obtain a contradiction to
Lemma 1.

Case 3.2 ≤ k < k0.
By Lemma 2 (witha = v, b = u, c = v, andd = u − v), the largest prime

factor of the product(vm+u)(v(m−1)+u) tends to infinity. Sincem is large, we
deduce that there is a primep > (v + |u|)k0 that divides(vm+u)(v(m− 1)+u).
The argument now follows as in the previous case. In particular,

ν(c0)− ν(cj)

j
<

vj + |u|
j(p− 1)

≤ v + |u|
p− 1

≤ 1

k0

<
1

k
for 1 ≤ j ≤ m,

and the right-most edge of the Newton polygon ofg(x) with respect top has slope
< 1/k. Hence, in this case, we also obtain a contradiction.

Case 4.k = 1.
From Lemma 2, the largest prime factor ofm(vm + u) tends to infinity with

m. We consider a large prime factorp of this product. In particular, we suppose
thatp > v + |u|. Note this impliesp - v. As in the previous case, we are through
if p|(vm + u). So supposep|m. The binomial coefficient

(
m
j

)
appears in the

definition ofcj, and this is sufficient to guarantee thatν(cj) ≥ 1 andν(cm−j) ≥ 1
for 1 ≤ j ≤ p− 1. On the other hand,

cj =

(
m

j

)
(vm + u)(v(m− 1) + u) · · · (v(j + 1) + u)

vm−j
.

For j ≤ m − p, the numerator of the fraction on the right is a product of≥ p
consecutive terms in the arithmetic progressionvt + u with gcd(p, v) = 1; thus,
ν(cm−j) ≥ 1 for j ≥ p. This implies that (1) holds withk = 1. It follows in the
same manner as before that the slope of the right-most edge is< 1. A contradic-
tion to Lemma 1 is again obtained (and the proof of the theorem is complete).
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