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1 Introduction

The generalized Laguerre polynomials are defined by

Lt

«
m

" (m+a)(m—-1+a)---(j+1+a)(-x)
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wherem is a positive integer and is an arbitrary complex number. In 1929,
I. Schur [4] established the irreducibility over the rational&f (x), the classical
Laguerre polynomials, for evemy. In 1931, I. Schur([5] considered?’ (x)in

general and showed that, (x) is irreducible over the rationals for eveny. The
casea ¢ {0,1} remained open. The purpose of this paper is to establish the
following:

Theorem 1. Let o be a rational number which is not a negative integer. Then
for all but finitely many positive integers, the ponnomiaILﬁ,?)(x) is irreducible
over the rationals.

Before going to the proof, it is worth noting that reducitilg’ (z) do exist
even witha: = 2. In particular, we give the following examples:

1
Lg2)(l‘) — é(x —2)(x —6)
1
Lg23) (z) = §(x —20)(x — 30)
1
L) (z) = ﬂ(x — 30)(x® — 782” + 1872z — 14040)

1
L9 (z) = m(gw — 420z + 1224) (252 — 220z + 264)

—1
L) () = 5x — 84)(625z* — 2950027
5 (2) = greagg (5r — 84)(6252 .
+ 4484002” — 2662080z + 5233536).
It is not difficult to show that in fact there are infinitely many positive integers

for which Lg‘*) (x) is reducible (a product of two linear polynomials).
Theorenj 1L is a direct consequence of the following more general result:



Theorem 2. Let« be a rational number which is not a negative integer. Then for
all but finitely many positive integers, the polynomial

N omta)(m—1+a)---(j+14+a)a
Jzaj (m — j)ly!

is irreducible over the rationals provided only that € Z for 0 < j < m and
lag| = |am| = 1.

I. Schur obtained his irreducibility results fﬁfn andLm (x) through general
results similar to the above (except also forrallz 1). Recent work of a similar
nature has been done by Filaséte |1, 2] and by Filaseta and Trifohov [3]. We note
also that the above results can be made effective so that for anydixed) it

is possible to determine a finite sét= S(a) of m such that the polynomial in
Theorenj 2 is irreducible (far; as stated there) provided ¢ S.

2 A Proof of Theorem(2

For a primep and a non-zero integer, we definev(a) = v,(a) = e wherep®||a.

We setv(0) = +oo. We define the Newton polygon of a polynomiélz) =
Z;‘:O a;x? with respect to a prime, wherea,a, # 0 as the lower convex hull

of the points(j, v(a,—;)). Thus, the slopes of the edges of the Newton polygon
of f(x) with respect top are increasing from left to right. We begin with the
following preliminary results.

Lemma 1. Letk and/ be integers wittk > ¢ > 0. Supposg(z) = > 7 bjx? €

Zlx] andp is a prime such thap 1 b, p|b; forall j € {0,1,...,n —¢—1}, and
the right-most edge of the Newton polygon §0%) with respect tg has slope
< 1/k. Then for any integers, ai, . . ., a,, with |ag| = |a,| = 1, the polynomial
f(x) =377 a;bja? cannot have a factor with degree in the interyah- 1, &].

Lemma 2. Leta, b, c andd be integers witthc — ad # 0. Then the largest prime
factor of (am + b)(cm + d) tends to infinity as the integen tends to infinity.

Lemma[] is given as Lemma 2 inl/[1]. Lemrnja 2 above is a fairly easy con-
sequence of the fact that the ®hequationua® — vy® = w has finitely many
solutions in integers andy whereu, v, andw are fixed integers withv # 0. It
also immediately follows from Corollary 1.2 ofl[6]. We omit the proofs.



Fix o now as in Theorein|2. Throughout the argument we suppose as we may
thatm is large. Define

cj:(?)(m—l—oz)(m—1+a)---(j+1+a) for0 <j <m.
We want to show that for all but finitely many positive integersthe polyno-

mial f(x) = > " ajc;a’ is ireducible over the rationals, whesg are arbitrary
integers with|ag| = |a,| = 1. Motivated by Lemma |1, we consider instead
g(r) = Z;io c;z’. Letw andv be relatively prime integers with > 0 such
thata = u/v. The condition thatv is not a negative integer implies that for each

j €40,1,....,m — 1}, m — j + a and, hencey(m — j) + u cannot be zero.

We assume that(z) has a factor ir¥[x] of degreek € [1,m/2] and establish the
theorem by obtaining a contradiction to Lemma 1. We divide the argument into
cases depending on the sizekof

Case 1k > m/log” m.

For a andb integers withb > 0, let 7(z; b, a) denote the number of primes
< z which are= a (mod b). Then the Prime Number Theorem for Arithmetic
Progressions implies thatdf:d(a, b) = 1, then

1 Todt T
ba)=— | L 1oL
m(@;b,a) ¢<b>/2 gt T <1og4a:>

_1(x+x+2x+0<x))
() \logz  logZz  logdx logtz) )"

By consideringr(z;b,a) — w(z — h;b,a), it follows that fora andb fixed, the
interval (z — h, 2] contains a primes a (mod b) if h = z/(2log” x) and if z is
sufficiently large. Taking = u, b = v, andx = vm + u, we deduce that for some
integerj € [0, k), the numbew(m — j) + u is prime. Call such a primg, and
observe thap > 2vm/3 (sincev is a positive integer ana is large). We deduce
thatp does not divide). Observe that

¢ — <m) (vm+u)(v(m—1)+u)--- (vl + 1) 4+ u)
4

for0 </ <m.

Um—é

Forj € {0,1,...,k — 1}, the numbers(m — j) + v appear in the numerator of
the fraction on the right-hand side above whenéver/ < m — k. Therefore,

vp(ce) > 1 for0 </¢<m—k. (1)
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Sincec,,, = +1, v,(c,,,) = 0. To obtain a contradiction from Lemrpa 1 for the case
under consideration, we show tha{c,) = 1; the contradiction will be achieved
since then it will follow that the right-most edge of the Newton polygom @f)
with respect top has slope< 1/(m — k) < 1/k. Recall thatp { v and that

p >2vm/3. Forj € {0,1,...,m — 1}, we deduce the inequality

2p >vm+u>v(m—j)+u>v+u>—p.

The condition thatv is not a negative integer implies that none 0f. — j) +u can
be zero. Hences itself is the only multiple o among the numbergm — j) +u
with 0 < j < m — 1. Sincecyg = (vm + u)(v(m — 1) + u) -+ (v + u) /v™, we
obtainy,(cy) = 1.

Case 2.k, < k < m/log?m with ky = ko(u, v) a sufficiently large integer.

Let z = k(loglog k)'/2. We first show that there is a prime> » that divides
v(m — j) + u for somej € {0,1,...,k — 1}. Then ) follows as before, and we
will obtain a contradiction to Lemnjd 1 by showing that the right-most edge of the
Newton polygon of(x) with respect tg has slope< 1/k.

Let

T={vim—-j)+u:0<j<k—-1}

Sincem is large, we deduce that the element§'afre each> m /2. Also, observe
thatged(u, v) = 1 implies that each element @fis relatively prime ta. For each
primep < z, we consider an elemea} = v(m — j) +u € T with v,(a,) as large
as possible. We let

S=T—{ay,:ptv,p <z}

By the Prime Number Theorem,

2k(log log k)1/?
log k '

m(2) <

We combine this estimate momentarily wif{ > k—n(z). Sincek < m/log®m,
we obtainm > klog? k. Consider a prime < z with p not dividingv, and let
r = v,(a,). By the definition ofa,, if j > r, then there are no multiples pf in
T (and, hence, irf). For1 < j < r, there are< [k/p’] + 1 multiples ofp’ in T’
and, hence, at mo§t/p’] multiples ofp’ in S. Therefore,

yp<H3><Z{ ,]<Vpk,

seS
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and

TP~ <k <i*

s€S p<lz
On the other hand,

k—m(z)
HS > (g)ls > (k:102g2/€> .

seS

Recalling our bound on(z), we obtain
log (Hs) > (k — m(2))(log k + 2loglog k — log 2)

seS
- (k _ 2ky/loglogk

Tog )(logk+210glogk—log2)

> klogk + 2kloglog k + O(k+/loglogk).

Sincek > ko wherek, is sufficiently large,

log (HS) > klogk > log(HHp”P(8)>.

seS s€S p<z

It follows that there is a primg > z that divides some element 6fand, hence,
divides some element @f.

Fix a primep > = that divides an element ifi, and letv = v,. The right-most
edge of the Newton polygon @f x) with respect tg is

Fix j € {1,2,...,m}. To complete the case under consideration, we want to
show that the fraction above is 1/k. Observe that

v(co) = v(e) <w((wj+u)(v(g—1) +u)---(v+u)

< v((vj + [u])!) = i [%M]

j=1

—vj + |u| _ vj+ul
< Z Bl R .
= v p—1
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Sincep > z = k(loglog k)'/? andk > k,, we easily deduce that the right-most
edge of the Newton polygon gf ) with respect tg has slope< 1/k as desired.
Hence, as indicated at the beginning of this case, we obtain a contradiction to
Lemma].

Case 32 < k < ky.

By Lemma[2 (witha = v, b = u, ¢ = v, andd = u — v), the largest prime
factor of the productvm +u)(v(m—1)+wu) tends to infinity. Sincen is large, we
deduce that there is a prime> (v + |u|)ko that divides(vm + ) (v(m — 1) 4+ u).
The argument now follows as in the previous case. In particular,

o) = vles) _vitlul _vlul 1

1

j ip=1) " p—1 "k Kk

and the right-most edge of the Newton polygory of) with respect tg has slope
< 1/k. Hence, in this case, we also obtain a contradiction.

forl1 <j<m,

Case 4k = 1.

From Lemma P, the largest prime factoriefum + u) tends to infinity with
m. We consider a large prime factprof this product. In particular, we suppose
thatp > v + |u|. Note this implieg 1 v. As in the previous case, we are through
if p|(vm + u). So suppose|m. The binomial coefficien(”) appears in the
definition of¢;, and this is sufficient to guarantee that;) > 1 andv(c,,_;) > 1
for1 < j <p— 1. Onthe other hand,

¢ = (m) (vm +u)(v(m —1)+u)---(v(j + 1) +u)

J v

Forj < m — p, the numerator of the fraction on the right is a productop
consecutive terms in the arithmetic progression- u with ged(p, v) = 1; thus,
v(cm—j) > 1for j > p. This implies that) holds witkk = 1. It follows in the
same manner as before that the slope of the right-most edgé .isA contradic-
tion to Lemm4 L is again obtained (and the proof of the theorem is complete).

References

[1] M. Filaseta, The irreducibility of all but finitely many Bessel Polynomjals
Acta Math.174(1995), 383-397.



[2] M. FilasetaA generalization of an irreducibility theorem of I. Schiénalytic
Number Theory: Proceedings of a Conference in Honor of Heini Halberstam,
Volume 1, edited by B. C. Berndt, H. G. Diamond, and A. J. Hildebrand,
Birkhauser, Boston, 1996, 371-396.

[3] M. Filaseta and O. TrifonovThe irreducibility of the Bessel Polynomials
preprint.

[4] 1. Schur, Einige Sitze uber Primzahlen mit Anwendungen auf Irreduz-
ibilit atsfragen, | Sitzungsberichte der Preussischen Akademie der Wis-
senschaften 1929, Physikalisch-Mathematische Klasse, 125-136.

[5] I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Her-
miteschen Polynomdournal @ir die reine und angewandte Mathemats
(1931), 52-58.

[6] T. N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cam-
bridge Univ. Press, Cambridge, 1986.



	Introduction
	A Proof of Theorem 2

