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1 Introduction

The generalized Laguerre polynomials are defined by

1w =3 (1)

=0 '

wherem denotes a positive integer (the degree) and real number. In two papers, I. Schur
[10, [11] investigated the irreducibility OE§2>(33) and Lﬁ,ll)(x) as well as their associated Galois
groups. He established that these polynomials are irreducible for all positive integerd that

the Galois group of,\Y (x) is the symmetric group,, for all m and the Galois group dt,(fl)(x)

is the alternating groug,,, if m > 1is odd or ifm + 1 is an odd square and, otherwise, the Galois
group isS,,. That the Galois group Rits (x) is A,, whenevern is odd (and sometimes when is

a multiple of4) is of particular interest as a classical result of Van der Waerden [12] is that almost
all polynomials in a certain asymptotic sense have Galois g&upMore recently, R. Gow_|7]
showed that the Laguerre ponnomid]%T)(x) provide a possible complimentary list of polyno-
mials to L) () in the sense that for ea@venm the ponnomiaIL,ﬁT)(x) may well have Galois
groupA,,. More specifically, he established thatifis even, then the Galois group of™ (x)is

A,, provided that the polynomidb,(fl”) (x) is irreducible over the rationals. A computation shows
that for2 < m < 100, L%T)(x) is irreducible. In addition, Gow established the irreducibility of
L () whenm is of the form2p”* wherep is a prime greater than 3 or whenis of the form4p*
wherep is a prime greater thah The purpose of this paper is to give some further insight into the
irreducibility of the polynomiald. (") (). We establish

Theorem 1. For almost all positive integers: the ponnomiaILﬁ,T)(x) is irreducible over the
rationals (and, hence, has Galois grouyp, for almost all evenn). More precisely, the number of
m < t such thatZ.("” (x) is reducible is

<e 9log(2t)
X — .
P log log(2t)

Furthermore, for all but finitely many,, L (x) is either irreducible orL{y (x) is the product of
a linear polynomial times an irreducible polynomial of degree- 1.

Our approach will be based on recent work of the first authior![3, 4] and of his joint works
with T.-Y. Lam [5] and O. Trifonov([6]. There several irreducibility results were established by
combining the use of Newton polygons with information on the distribution of primes. Similar
to the general form of these results and to the original work of Schur, we establish the following
result from which Theorein| 1 is an easy consequence.

Theorem 2. For all but O ( exp(9log(2t)/ log log(2t))) positive integersn < ¢, the polynomial

f01=3 0 <m2Tj)%

J=0



is irreducible over the rationals for every choice of integegsay, . . ., a,, with |ag| = |a,,| = 1.
Furthermore, there is an absolute constamf such that the exceptionat for which some choice
of integersay, a4, . . ., a,, as above produces a reducible polynomfét) are either< m, or are
of the formm = 2¢ x 37 x n where

8log(2m) )

<
e (log log(2m)

In the case thatn > my, either f(x) is irreducible or f(z) is the product of a linear polynomial
times an irreducible polynomial of degree — 1.

We let A denote the set of exceptional in Theoren{ 2, and let\(¢) denote the number of
elements ofd that are< ¢. Thus, Theorem|2 gives

9log(2t)
a0 < e (et )

We note that the set is nonempty. Indeed, is an element ofl since
ALY (z) = (2® — 8z 4+ 12) = (z — 6)(x — 2).

The polynomialL{” (z) may well be the only example of a reducitll€” (). However, we show
in the final section of this paper that the séts infinite. Our next theorem follows from the
methods given there.

Theorem 3. A(t) > logt.

Because of our approach for determining whethr) has a quadratic factor, the valueraf
in Theorenj P is ineffective. We note here, however, that our approach can be modified to give an
explicit constant:, such that ifm > ¢, then eitherf(z) is irreducible or it has a factor of degree
< 2.

Considerf(z) as in the statement of Theorém 2. Define= a,,, and

cj:aj(?)(Qm)(Qm—1)~~(m+j—|—1) for 0<j<m-—1.

Thus, we have

Cont = Gy (T) (2m), s = Qs (Z‘) 2m)@2m —1),...,

& = ar (T) 2m)(2m — 1)+ (m +2), and co = ag(2m)(2m —1)--- (m + 1).

Thus, ifg(z) = m!f(z), theng(x) = 3 7" c;27. Hence, it suffices to prove the analogous result
in Theorenﬂz for the polynomialgx) = > cja’ € Z[x].

We organize the remainder of this paper as follows. We begin by stating some general analytic
results. Next, we provide a few technical lemmas crucial to the proof of Thedrem 2. We prove
Theorenf 2 using a proof by contradiction. We assumegthathas a factor of degréec [1,m/2].

We partition the intervall, m/2] into seven subintervals. In each such subinterval, we show that
for m sufficiently largeg(z) cannot have a factor of degréeexcept in the case that= 1 where

g(x) might have a linear factor ifn takes on a specific form. We end the paper by giving a
constructive proof that the sdtis infinite.



2 Preliminaries

We begin with some analytic results which will aid in the proof of Theorém 2. We will make use
of the following result of Rosser and Schoenfeld [9].

Lemma 1. Letn(z) denote the number of primes not exceedin@hen

x 3
< 1 forall z > 1.
() logx( * 2log x) v

The next result can be found inl[4].

Lemma 2. Leta be a fixed non-zero integer, and I&tbe a fixed positive integer. Let> 0. If
m is sufficiently large (depending an NV, ande), then the largest divisor ofi(m + a) which is
relatively prime toV is > m!~.

Newton polygons will be an important tool utilized in determining the irreduciblility of the
polynomialsg(x) discussed at the end of the previous section. We define the Newton polygon of a
polynomial as follows. Let

flz) = Zajxj € Z|x]
j=0
with aqa,, # 0. Letp be a prime, and lej be an integer. We use tipeadic notation

v(y) = v,(y) =r if p'lly (thatisifp’|y andp™" 1 y).

If y = 0, then we understand this to meafy) = +o0c. Forj € {0, 1,2,...,m}, we define the set
of points

S ={(0,v(am)), (1, v(am-1)),- .., (m,v(ap))}

in the extended plane. We refer to the elementS af the spots of (z). We consider the lower
edges along the convex hull of these spots. The left-most edge has one endpoirit bejag))
and the right-most edge hés:, v(a()) as an endpoint. The endpoints of every edge belong to the
setS. When referring to the “edges” of a Newton polygon we shall not allow 2 different edges to
have the same slope. The polygonal path formed by these edges is called the Newton polygon of
f(z) with respect to the primg. Observe that the slopes of the edges are always increasing when
calculated from the left-most edge to the right-most edge.

We will make use of the following result from|[3] (which itself is based on work of M. G. Du-
mas [2]).

Lemma 3. Letk and/ be integers withk > ¢ > 0. Supposg(z) = 7" bz’ € Z[z] andp is

a prime such thap { b, p|b; forall j € {0,1,...,m — ¢ — 1}, and the right-most edge of the
Newton polygon foy(x) with respect tg has slope< 1/k. Then for any integersy, a1, . .., a,
with ag| = |a,,| = 1, the polynomial(x) = 3~ a;b;27 cannot have a factor with degree in the
interval [¢ + 1, k].



3 Further Preliminaries

We now considerf () as in Theorem 2 and(x) = m!f(z) = > 7" ¢;2’ as defined in the

introduction. We establish some technical lemmas associated with the polyrdmial

Lemma 4. Letm be a positive integer. Suppose thas a prime, thatc andr are positive integers,
and that/ is an integer in0, k) satisfying:

(i) p"l|(m —£) or p[[(2m — £)

(i) p>3k+1

log(2m) 1 1 1
< = = — .
(i) A(r,p) o logp + s whereA(r, p) 2/(1 3p7"_1)

Theng(z) cannot have a factor with degree i+ 1, k|.
Proof. The conclusion of the lemma holds 4f > m, so we supposé < m — 1. The proof

consists of verifying the hypotheses of Lemma 3. For this purpose, we only consider the case that
Uy = Q1 = -++ = ag = 1. Thenc,, = 1 so thatp { ¢,,. Also, we have

cj:(?)(2m)(2m—1)---(m—l—j—l—1) foro<j<m-—1. (1)

If p"||(2m—{), then itis clear from{ (1) that dividesc; for j € {0, 1,...,m—(—1}. If p|[(m—{),
then writing (1) as

o= (2" Ymtm =1+

m—j
we see thap dividesc; for j € {0,1,...,m — ¢ — 1}.
Now, we need only show that the right-most edge of the Newton polyggfuofwith respect
to p has slope< 1/k. The right-most edge has slope

max {M} )

1<j<m j

Let j be such that the quantity ip|(2) is maximal so that by (jii) it suffices to show that

v(co) — v(cy) <A )log(2m) N 1

j prlogp  p-1
Observe that by {1)
_ _ @EmEm-1)---(m+1) _ jlm+j5)!m—7)
i (T)2m)@m —=1)---(m+j+1) ml? '
Since



we deduce

y@@—y@ﬁ—yug+y(w””ﬂ)—u< "“ ) @3)
' J

s (5D -2
S (B )

whereN = [log(2m)/ log p]. Note that
e
p° P? I P’ P’ I
] @

P’ p? p’
If j > p"/A(r, p), then using[(B) and [4) we obtain

so that

log(2m)
p"logp

v(co) = v(¢))
J

N
1 1 1 N 1
< +=) 1=——-+—<——+A(r,p)
p—1 7 Z; p—1 p—1
and our result follows.
Suppose thaj < p"/A(r,p) and choose so thatp®||(m + i) for somel < ¢ < j with e

maximal. We assume as we may that 1 for otherwise the quantity iri [2) is equal to 0 and our
result is trivial.

Claim.e < r.
To see that the claim is true, suppase> r. If p"||(2m — {), then ap®||(m + i) we have
p"(2i + ). Thus,

s

P<24l<2+k<2j+P—9j4 L
3 3pr71

Likewise, if p"||(m — ¢), then ag°||(m + i) we deduce”|(: + ¢). Hence,

r

P<itl<2itl<2j+k<2j+P<ojr P
3 3pr71

Both situations imply that

P 1
> e —_ = " A
iz5 (1 3p”) p"/A(r,p),

which is a contradiction. The claim follows.

Using the claim, the fact that ||(2m — ¢) or p”||(m — ¢), and the fact that®||(m + i), we can
replacer with e in the proof of the claim to obtaip > p°/A(e, p). From the definition ok, we
deduce for > e that

e R R R




so that

()l ) < (5]l ) 5o

s=1 s=1

We now consider three possibilities: @)> 2, (2)e =1 andj < p, and (3)e = 1 andj > p.
Suppose first that > 2. Usingj > p¢/A(e, p) we see that

v(co) — v(cy) _ 1 L8 1 N eA(e,p)‘ 5)
J p—1 35 p-1 P

Observe that\(e, p) decreases asincreases so that fer > 2 we haveA(e, p) < A(2,p). Also,
e/p® < 2/p*. Hence, using (5) we have

v(co) —y(cj) _ 1 N 2A(2,p) _ 1 N 4 ‘
J p—1 p? p—1 pp-3)

Sincep > 3k+1 we deduce > 5. Further, we note that—1/3 > p—1 > 0. From the inequality
above we have

p+10/ —

=

i p—1 p-1) pp—1 = p@k) "k

Applying Lemmg B our result follows when> 2.
Suppose that = 1 andj < p. Sincej < p we deduce that(j!) = 0. Note that previously in
the argument we used the fact thdj!) < j/(p — 1) leading to the expressiaty(p — 1) in (5).
Thus, we now obtain
v(co) —wley) _ e
J T
Also, ase = 1 andj > p°/A(e,p) = p/A(1,p) = p/3 we have
M) —vle) _1_3 3 _
J —J " p 3k

| =

Applying Lemmd B our result follows when= 1 andj < p.
Finally, suppose that= 1 andj > p. We have
v(co) — v(cy) _ 1 e 1 1 1 1 1

- {—+ < =+ —==—.
¥ p—1+j_p—1+p 2k+2k k

Applying Lemmg B our result follows when= 1 andj > p. O

Lemma 5. Letm be a positive integer. Suppose thas a prime, that: andr are positive integers
with » > 2, and that/ is an integer in0, k) satisfying:

() p"[l(m —1)
(i) p > max{k + 2,2k — 1}



log(2m) 1 < 1
p/2logp p—1" Kk

(ii)
Theng(x) cannot have a factor with degree b+ 1, k].

Proof. For the proof of Lemm@]5 we begin in a similar fashion as in the proof of Lefjma 4. The
proof consists of verifying the hypotheses of Lenjma 3. We tgke= a,,-1 = --- = qp = 1.
From the proof of Lemma|4, we see that c,, and if p"||(m — ¢) thenp dividesc; for every
je{0,1,...,m—~€—1}.

Now, we need only show that the right-most edge of the Newton polyggfuofwith respect
to p has slope< 1/k. The right-most edge has slope given Pl (2). j.&e such that the quantity
in @) is maximal. We consider the following three possiblitigs< ¢, ¢ +1 < j < p'/?, and
j > pr/Q

Supposeg < /. If p|(m + ¢) for somei € {1,2,...,j}, then sincep|(m — ¢) we deduce that
dividesi + ¢ = (m +¢) — (m — ¢) and

0<it+l<j+0<20<2(k—1)<p.

This is impossible, so((m + 1)(m +2) --- (m + j)) = 0. We obtain

y@@—umﬁsugn+ucmﬁjﬂ>—y( "“.)

m! (m —j)!

. m! J J
Zl/(j!)—V((m_j>!) <v(j!) < pa— <

Dividing through by; and applying Lemmi|3 our result follows wher< /.

Suppose that+1 < j < p'/2. Observe that condition (ii) in the lemma impligs- 1 > 2k — 2
so thatk — 1 < (p — 1)/2. Letu = [r/2] + 1. By considering the parity of we see that
u > (r +1)/2. We now claim that the following inequality holds:

PPk —1<pn (6)

To see that the inequality holds, we begin by noting #taj = p’/? is an increasing function of
for r > 1. Furthermore,

RSV .V V.52

N 2 2

Thus, it follows thap'/? > (,/p + 1)/2 for all integersr > 1. Multiplying both sides by, /p — 1
(which is positive a® > 2) we have

p_1 r r r
5 < (VPP = pl

Hence, 3
pr/2 +k-1< pr/2 + 5 < pr/Q +p(r+1)/ pr/Q < pu

Thus, the inequality irf (6) holds.



If p*|(m + 4) for somei € {1,2,...,;}, then as in the case< ¢ we obtainp*|(i + ¢). Using
(+1 < j < p"/?and[6) we obtain

0<it+l<j+l<p4+k—1<p"
which is a contradiction. Therefore,

(- B) -2 (57D

since the summand counts the number of multiples’ af (m, m + j]. Thus, we have

[r/2]

s 3 (52 [3]) -2 (7] - )
ﬁ*fﬁ@m;’}*EH”‘JD—_fi (G -150)

s=[r/2]+1

IN

Recall (from the proof of Lemmi 4) that the first summand on the right above is On the
other hand, there is a multiple pf for everys € ([r/2], r] in the interval(m — j, m| (namely, the
numberm — ¢). Hence, the term

#-15]

M > 1

P’ P’

for at least — [r/2] > r — (r/2) = r/2 differents. Therefore, we obtain

J J
I/(C()) — V(Cj) S ]: + [T/2] — 7“/2 S F
Thus, in this casév(co) — v(¢;))/j < 1/k as well. Applying Lemma|3 we deduce that in the case
¢+ 1< j < p/?ourresult follows.
Finally, suppose that > p'/2. Recall from the proof of Lemn@ 4 we have

oo =vten < 52+ 3 ([25] -= 2]+ [%2))

s=1

whereN = [log(2m)/log p|. Also, in the proof of Lemmp|4 we showed that

EIRENEIE

Therefore, using these two facts combined wjith /2 and (i) we have

vico) —vle) _
J

N =
] “p—1 p/?logp " k

QIH

i N 1 log(2m) <

Applying Lemma{} our result follows when> p'/2. ]



We do not supply proofs for the next three results. The first is a consequence of gap results
between primes (cf. M. N. Huxley [8]), the second can be found in G. Bachman [1], and the third
is a straight forward exercise.

Lemma 6. For m sufficiently large, there is a prime in the interv@im — m?/3, 2m).

Lemma 7. Suppose is a prime number and let be a positive integer with
n=ag+amp+ap’ + -+ a;p’,

as the base representation of. (so that0 < a; < p for eachi). Then

n— S,

p—1

vp(nl) =

Y

wheres,, = ag +a; + - - - + as.

Lemma 8. Letk be a positive integer. f = 3 or 15 (mod 18), then3?||(2% + 1).

4 A Proof of Theorem[2

We considern to be sufficiently large and assume tlg@t) = m!f(z) has a factor irZ[x] of
degreek € [1,m/2]. We divide the argument into cases depending on the sike of

CASE 1.m?3 <k <m/2.

Lemmd 6 implies that fok in the interval above there exists a prime (2m — k, 2m]. Thus,
there exists a primg of the form2m — j wherej € [0, k). In particular, we have > m. Recall
that

Cg:ag(n;)(Zm)(Zm—1)--~(m—|—€+1) for0 <¢<m-—1.

Sincej € {0,1,2,...,k — 1}, the numbekm — j appears on the right-hand side above whenever
0 < ¢ < m — k. Therefore, we have

vp(c) > 1 for 0</<m—k. (7)

Also, ¢,,, = £1 impliesy,(c,,) = 0. To obtain a contradiction for the case under consideration,
we show that,(c,) = 1; the contradiction will be achieved since then it will follow that the right-
most edge of the Newton polygon gfx) with respect tgy has horizontal length- m — k£ and

the endpoints are this edge’s only lattice points. In other war@s) has an irreducible factor of
degree> m — k which is impossible. Alternatively, the slope of the right-most edge of the Newton
polygon ofg(z) with respectte is < 1/(m — k) < 1/k so that Lemma|3 applies with= % — 1.

Forj € {0,1,2,...,m — 1} we deduce the inequality

2p>2m > 2m — 5 > 0.

Hencep itself is the only multiple ofp among the numberzn — 7 with 0 < j < m — 1. Since
co = x(2m)(2m —1)--- (m + 1) we obtainy,(c,) = 1.



CASE 2.10°° < k < m?/3.

Let z = (k/4)log k. We will show that there is a prime > = that divides2m — j for some
j€{0,1,2,...,k—1}. Then @’) follows as before. We considey = a,,_1 = --- = a9 = 1 and
obtain a contradiction to Lemna 3 by showing that the right-most edge of the Newton polygon of
g(x) with respect tg has slope< 1/k.

Let

T={2m—-j : 0<j<k-—1}
Clearly, the elements df are each> m. For each prime < z, we consider an elemehf =
2m — j € T with v,(b,) as large as possible. We let

S=T—{b, : p< =z}
Note that fork > 100 we havelog(1/4) + log k + loglog k > log k from which it follows that

1.03 < 1.03
log(1/4) + log k + loglogk — logk

so that
1.03(k/4)log k < (0.26k) log k

log(1/4) + log k + loglog k — log k

Sincek > 10% andz = (k/4)logk, we deduce from Lemma 1 tha{z) < 1.03z/logz. It
follows for £ > 10%° that

= 0.26k.

1.03z
log 2z

m(z) <

We combine this estimate momentarily wit| > k—(z). Sincek < m??, we deducen > k*/2.
Consider a primg < z and letr = v,(b,). By the definition ofb,, if j > r, then there are no
multiples ofp’ in T' (and, hence, it¥). For1 < j < r, there are< [k/p’] + 1 multiples ofp/ in T
and, hence, at mo§t/p’] multiples ofp’ in S. Therefore,

(115) < Z 2] <ua,

k
<020k < 5. (8)

1%
seS j=1
and
seS p<Lz

On the other hand,
Hs > m\S\ > (k3/2>k—7r(z) _ k,l.5(lc—7r(z)).

seS

Claim. Fork > 10%° we have
k1.5(k—7r(z)) > k,k

To verfiy the claim it suffices to show that fér> 103° we have

150k — 7(2)) > k.

10



Observe that fot: > 10°° we have from[(B)

1.57m(z) < (1.5)(k/3) = k/2 = k+ 1.57(z) < 1.5k
= 1.5(k —7(2)) > k.

The claim follows.
The above estimates now give

[T [T

sesS seS p<lz

from which it follows that there is a prime > = that divides some element §fand, hence, divides
some element dt’. Fix a primep > z that divides an elemertin — ¢ in T"with 0 < ¢ < k, and
let v = v,. Sincek > 10*°, we obtainp > z > 5k. The right-most edge of the Newton polygon
of g(x) with respect tg has slope as irf [2). Fix € {1,2,...,m} so that the quotient iff [2) is
maximal. To complete the case under consideration, we want to show that this quotiehtis
Let L be an integer such that*! > m + j > p%. Then

V<Co>—v(cj>=v(j!)+y<<m+j>!)_V(L!>

(m —j)!

Thus, foreach € {1,2,...,m},

] log(2m
J_. g( )‘

v(co) —v(c) <v(m+1)(m+2)---(m+j)) < b1 log p

(9)

If p does not dividgm + 1)(m + 2)--- (m + j), thenv((m + 1)(m + 2)---(m + j)) = 0 and
our result follows. Thus, we suppose as we may phdivides(m + ¢) for some: € {1,2,...,j}.
Further, sincep divides2m — ¢, it follows thatp divides2i + ¢ = 2(m + i) — (2m — ¢). This
implies thatp < 2i + ¢ < 2j + k — 1. In other words, ifp > 2j + k — 1, then

vi(m+1)(m+2)---(m+7))=0 (20)

and our result follows. Thus, we assume that 25 + k£ — 1.

11



Initially, suppose thaj < 2k. Then we deduce that
bk<p<2j4+k—1<4k+k—1=5k—-1

which is impossible.
2k log(2m)

Next, suppose thagt >
log k

v(co) - v(c;) < 1 N lolg(2m) < 1 N 1
J p—1 jlogp bk 2k

<

)

| =

which is what we desire.
Finally, it suffices for us to considek + 1 < j <

12" <&

s€S p<lz

2k log(2m)

. Recall that
log k

Note that ifp > z > 5k, thenp divides at most one element §f Therefore,

H H pup(S) < H (2] +k— 1) < (2] 4k — 1)#(2j+k—1)_

ses P>z 2<p<2j+k—1
p'r () <2j4k—1

Combining these estimates and taking logarithms it follows that

l%(IIrhﬁ@ II ﬂwofﬂ%“ﬂ+ﬂgj+k—mbg%+k_1»

s€S p<lz p>z
pp(9)<2j+k—1

Further, note that
log(k!) < (k+1)log(k+1) — k

k—+1 1
§(k;—l—l)logk—i—%—k:klogk+logk+1+——k.

k
: 2k log(2 _
Using Lemma 1,1)2), atk +1<j < M, we obtain

ogk
o (TITT T1 )
seS p<lz p>z
PP <2j4+k—1

1 , 3(2j +k—1)
<(k+Dlogk+14+——k+2j+k—-1)+ "2 — -
< (k+1)log +l+ + (25 + )+ Dlog k

. 37 3
< klogk + 2 log k
< klogk + ‘7+logk+210gk:+ og
4k log(2 log(2

< klogh 4 thloe@m) | Gklog(2m) | 3k .

log k log? k 2logk

12

. Combining ) with the fact that — 1 > 5k we obtain

(11)

(12)

(13)



4klogm  6klogm 5k 5k

< klogk log k.
= klogh+ log k * log® k N log k * log? k loe
On the other hand, we have
HS > m\S\ > mk*ﬂ'(z).
ses
Thus, taking logarithms and usir[d (8) we obtain
log (H s) > (k—7(z))logm > (k — 0.26k) logm = 0.74k log m. (14)

seS

We claim that the estimate on the right-hand side of (14) is larger than the right-hand $ide of (13).
Equivalently, we claim that

4klogm  6klogm 5k 5k

0.74 k1 > klog k log k
ogm og K + log & + log? + log & + o + log
is a true inequality. In other words, we claim
4logm 6logm 5 5 log k

741 — —
0.7dlogm log k o8 log? k >10gk+log2/<+ k

Using thatk > 103°, one easily deduces that the right-hand side above(sl. Thus, it suffices
to show that

4logm | 6logm

741 —
0-74logm log k o8 log® k

> 0.1. (15)
To see this, note that das< m?/3 then
0.74logm — logk > 0.74logm — (2/3) logm > 0.07 logm.

Further, ag > 10°°, we have

4logm 610gm< 4logm 6 logm

< 0.061 .
log k logZk — 30log10  900log*10 — s
Thus, sincen is sufficiently large, it follows that
41 61
0.74logm — —2 _jogk — ~S" 5 0.01logm > 0.1.
log k log” k
Hence,
H S > H le’p(s) H pr(5)7
seS s€ES p<lz p>z

pvP(8)<2j4+k—1

from which we deduce that there exists a prime- z which divides some € S with p*»(®) >
2j + k — 1. Fix such ans, and let/ now be such that = 2m — ¢. Letr be an integer defined so
that thatp” > 2j + k — 1 > p"—! and such thap” divides2m — ¢. Recall that < 2j +k — 1 so
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thatr > 2. Note thatr — 1 < log(2j + k — 1)/ log p. Also, p" does not dividgm + ¢) for any
i€{1,2,...,j} (for otherwise we deduce that < 2j + k£ — 1). Hence, we have

u((m+1)(m+2)---(m+j))SZ(p%#—l)§ﬁ+r—1. (16)
We show next that
j > (5/4)k(r —1). (17)

Sincer > 2, we deduce
2(5k)" 1 > 2(5" Yk > (5r — 3)k

so that

45+ 2k —2 > 2p" 1 > 2(5k)"t > 5kr — 3k — 2.
Hence, [(I]7) easily follows. From ([L6) ajd [17), we obtain

v(co) — v(cy) 1 r—1 1 4 1

<+ ==
i o1 T SE TR w

which is what we desire.
CASE 3.12 < k < 103 = k.

We will use Lemma 4 to prove the case under consideration. From Léfinma 1,

3k 3
m(3k) < log(3k) <1 * 210g(3k)) <k

for £ > 21. Upon computation we see that3k) < k for 12 < k& < 20. Using an argument as in
Case 2, we briefly indicate why one of the numbgrs 2m — 1,...,2m — k+ 1, say2m — ¢, can
be written as a produet s, satisfyings; < k! < kq! andged(sq, Hp<3k p) = 1. TakeT as defined
in Case 2 and’' as well but withz = 3k. Thenn(3k) < k implies|S| > 0. Let ¢ be such that
2m — ¢ € S and note that

si= [0 <I] I "™ <&,

p<3k seS p<3k

the last inequality following as in Case 2. Thus, we obtaim — ¢ € T as above. Note that
sy > ¢12m for some constant; (e.g.,c; = 1/(2 X ko!)).
Sinceg(z) has a factor of degrée we obtain from Lemm@4 that for every prime power divisor

p" of s9,

log(2m 1
A(r,p) ’igl( ) + >
prlogp  p—1

Since each suchis > 3k + 1, it follows that

| =

log(2 2 1
A(r,p)M > — )

Thus,
_ e log(2m)
logp

14



wherec, = 6ky. From this we deduce that

2¢9 log(2m) - 2log log(2m)

log log(2m) logp

These lead to a contradiction sineeis sufficiently large,

Z 2log log(2m)

1 = 1 <
0g S Z'r’ ogp < log p

p"||s2 p<2c2log(2m)/ loglog(2m)
< 5eo log(2m)
~ loglog(2m)

logp

< log(2¢ym) < log ss.

Thus,g(x) cannot have a factor of degréec [12, ko).
CASE 4.4 <k < 11.

Again we use Lemmlg 4 to settle the case under consideration. Observe that

1
C—k = am,kgm(m —1--(m—k+1)2m)2m—1)---2m —k+1). (18)
Defined(k) to be the number of distinct irreducible linear factorssirin the coefficient,, ;. of
g(z). For example, ifc = 4, then there are 6 distinct irreducible linear factors appearing in (18),
namelym, m — 1, m — 2, m — 3,2m — 1, and2m — 3. In generald(k) = k + [k/2]. By a simple
computation we obtain the following table.

k  |3]4]5]6] 78] 91011
d(k) |4]6|7|9]10]12[13[15|16
7(3k) |4]56/7| 8991011

(o]

Using the table above we deduce th@8k) < d(k) for 4 < k < 11. Using an argument as in
Case 3, we get that one of the numbersn — 1,...,m —k+1,2m,2m —1,....2m —k + 1
in the coefficient of:,,_, can be written as a produsts, satisfyings; < k! < 23 x 32 x 5 x
7Tx 11 x13 x 17 x 19 andng(SQ,Hpggkp> = 1. We obtain thak, > ¢;2m for some constant
¢1. Assumingg(z) has a factor of degrele we obtain from Lemmp]4 that for every prime power
divisor p” of s,,
log(2m) 1 1

A > —.
We are led to a contradiction by repeating the argument at the end of Case 4.g{Husannot
have a factor of degreec [4, 11].

CASE 5.k = 3.

Consider primes dividingn, m — 1, andm — 2. Take away at most two of these numbers
which are divisible by the highest powersand3 (one of these numbers could be divisible by
the highest power df and the highest power @) so that there is at least one number of the form
s182 Wheres; € {1,2} andged(6, s;) = 1. Note that form > 6 we haves, > (m — 2)/s; >
(m—2)/2 > m/3. Write sy = 5" x 7 x s3 whereged(35, s3) = 1. We claim that we may assume
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that5* < m'/? and7’ < m!/3 sincem is sufficiently large. To see this, suppose that> m'/3.
Thenu > 2. Further, takingc = 3 andp = 5 we havep > max{k + 2,2k — 1}. Finally, since
5% > m!/3 then5“/? > m'/% and we have

log(2m) 1 < log(2m)
54/2logh 5 —1 — m'/6logh

+- <

1 1
43
Thus, usingy = 5, r = u, andk = 3 in Lemma[ % we deduce thgfz) cannot have a factor of
degree 3. Hence, we may assume thtat m'/3.

A similar argument allows us to assume &t < m'/3. Hence, we haven/3 < s, =
5% x 7V x 83 < m*/3s3 so thatsy > m'/3/3.

We argue again in a manner similar to that given in Case 3. Assuminghas a factor of
degreek = 3 we obtain from Lemmp]4 that for every prime divigorof s;

log(2 1 1
A2y L
p"logp p—1 3

Since each suchis at leastl1 > 10 = 3k + 1, it follows that

log(2 1 1 1 1 2 1
A(r,p)og(m) - > — = >
prlogp 3 p-—1 9 976
Thus,
log(2 log(2
log p log p
From this we deduce that
36 log(2 2 log log(2
p < 36logm) oy o 2loglog(2m)
loglog(2m) logp
These lead to a contradiction since
2 log log(2
logss = Y rlogp < > Mlogp
logp
pT||s3 p<361log(2m)/loglog(2m)
80log(2m) m'/3
< — = <1 < 1 .
= loglog(2m) = %\ 3 0853

Thus,g(x) cannot have a factor of degrée= 3.
CASE 6.k = 2.

In this case we use Lemrha 2 to deduce that sinde sufficiently largey(z) has no factor of
degree 2. TakingV = 30 ande = 1/2 in Lemmg 2 we deduce that there exists an intégesuch
that form > M the largest divisor ofn(m — 1) which is relatively prime ta0 is > m'/2. Hence,
we can writem(m — 1) = s;5, whereged(30, s) = 1 ands, > m'/? and such that if" divides
so thenp > 7.

We argue again in a manner similar to that given in Case 3. Supposeas a factor of degree
k = 2. Note that every prime divisgr” of s, is atleast = 3 x 2+ 1 = 3k + 1. Also, every prime

16



divisorp” of s, divides one ofn andm — 1. Thus, we obtain from Lemnjg 4 that for every prime
divisor p” of s,,
log(2m) 1 1
A —.
(r.p) plogp * p—1 ~ 3
The argument proceeds as before, obtaining a contradiction by considering thelsize oThus,
g(x) cannot have a factor of degrée-= 2.

CASE 7.k =1.

We know now that there is amy, such that ifm > my and f(x) is as defined in Theorem
[2, thenf(z) cannot have a factor of degréec [2,m/2]. We suppose in this section tha, is
sufficiently large and, in particular, that, > my. Write m = 2 x 3/ x n whereged(6,n) = 1
with m > my. Suppose that satisfies

8log(2m)
2 exp (m) (19)

Sinceg(z) has a factor of degrele = 1 we obtain from Lemmp]|4 that, for every prime divigér

of n,
log(2m) 1

A(r,p
p) prlogp  p-—1
Since each suchis at leasb > 4 = 3k + 1, it follows that

> 1.

log(2 1 1 2 _1
A(r,p) 0g(2m) >l—-———>1—--==>—.
p"logp p—1 3 372
Thus,
3 log(2 9log(2
o< SA@p) og(2m) _ 9log(2m)
2 log p 2logp
From this we deduce that
5log(2m) nd 3loglog(2m)
log log(2m) 2logp
These lead to a contradiction sineesufficiently large implies
3loglog(2m)
logn:Zrlogpg Z Wlogp
p7||In p<5log(2m)/ loglog(2m)
log(2
log log(2m)

Thus,g(x) cannot have a factor of degrée= 1.

On the other hand, ifn is written as above withn > m, andn does not satisfy| (19) and
g(x) has a linear factor, then we claim thgt:) has an irreducible factor of degree— 1. Write
g(x) = u(z)v(x) whereu(z) € Zz], v(x) € Zlz|, deg(u(x)) = 1, anddeg(v(z)) = m — 1.
Suppose that(z) is reducible. Thern(z) has a factor(z) € Z[x] with 1 < deg(r(z)) <
(m — 1)/2. This implies that-(z)u(x) is a factor ofg(z) with degree in2, (m + 1)/2]. Since
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m > mg > my, We know thatg(z) cannot have a factor of degréec [2,m/2]. Thus,r(x)u(x)
must have degreen+1)/2 andv(x)/r(z) is a factor ofg(z) of degregm — 1) /2. We are through
unless(m — 1)/2 = 1 (otherwiseg(z) has a factor of degrele € [2,m/2]). In this casen = 3
andg(z) has three linear factors. Singe > m, andm, is sufficiently large, this case need not be
considered. Hence, the claim follows.

Finally, we estimateA(t), the number of elements of which are< ¢. Suppose that: € A
andmy < m < t. Thenm = 2' x 3/ x n wheren satisfies the inequality in Theordr 2. Thus,
2t <m < tsothati < (logt)/(log2). Similarly, we havej < (logt)/(log3). Hence,

2 e (310820 Olog(21)
A(t) < mg + (logt)” exp (]og log2)) < P \loglog(20) )

This completes the proof of Theorém 2.

5 An Infinite Set of Reducible Examples

In this section, we establish that the skebf Theoren]  is infinite. In fact, our argument is easily
modified to giveA(t) > logt.

Recall the generalized Laguerre polynomial witk= m is of the formh(z) = m! L™ (x) =
> oo bjr’ € Z[z] where

bj:(?)(2m)(2m—1)--~(m+j+1) for0 <j<m.

For each) < j < m note that
m m 2m
b= Jem)2m—1)---(m+j+1)=( ) (m =)L,
: (])7m<m o (m+j+ 1) (j)@wﬂ)mzy>

Furthermore, note that(z) = > 7" c; = > 7", a;b; where the);'s are defined as above.
Letm = 3-2F = (24 1) - 2% = 2% + 2% wherek is a positive integer withk = 3 or 15

(mod 18). Observe that the spots of the polynomigk) are of the form(m — j,v,(b;)) where

j €{0,1,...,m}. Suppose = 2 and consider the values 0f(b,x) andv,(by). Takingj = 2*

we have from above that
k+1 k k+2 k+1
by = (2 2 )(2 2 )zw
9ok 2k+1
Lemmd 7 implies that, (2542 + 25+1)1) = 2642 4 ok+1 _ 2 1 (2841 4 2F)1) = 2k+1 4 2k — 2,
v (28 = 281 — 1, andw,(2*!) = 2% — 1. Therefore, we have

Vo(bar) = [1a((2FF1 + 2)1) — 1 (281) — w(28H1)]
+ [1/2((2]€+2 + 2k+1)!) o V2(2k:+1!) o l/(2k+2!)} + 1/(2k+1!)

=040+ 2t -1 =291 _1,
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Thus, if j = 2¥ we have the spdtm — j, 1»(b;)) = (281, 251 — 1). Also,

bo = (m> (2m) . 2m)t (2R 2t

0 ml (2041 4 28)]

Hence, we have

va(bo) = (272 4+ 28I — by (257 + 291
— (2k+2 + 2]€+1 . 2) . (2k+1 + 2k‘ . 2)

= oFt2 _ ok — ok .3 — iy,

Thus, ifj = 0 we have the spdin — j, 2(b;)) = (m, m).
Consider the integers

A=6% b3, B=2-6% by, C=2m2 6™ and D = 6™ + b,.

Observe tha2™ exactly dividess™ andb, so thatv, (D) > m+1. Also, vy (B) = v5(2)+12(62) +
Vo(bor) = 14 2F + 281 — 1 = m. Thus, vy (D) > vy(B) = m.
Next, lets = v5(by) and observe that

v (B) <t = 3 [5] < om 35 = amazz) =

m.

Thus,v3(D) = min{v3(6™),3(bg)} = min{m,s} = s. Further,u5(A) = 15(63) + v3(b3) =
3 + v3(bs). We claim that ag = 3 or 15 (mod 18) then

I/3(b3) = Vg(bo) - 3.

To see this observe that

o () e

- m(m—16)<m_2) “2m)2m —1)---(m+4)

___mlm = )m=2) C1)ee(m

N 6(m+1)(m+2)(m+3) (2m)(2m 1) ( _|_1)
m(m —1)(m — 2)

T 6(m+ )(m+2)(m+3) "

Thus, in order to justify the claim it suffices to show that i 3 or 15 (mod 18) then

" (6( m(m — 1)(m — 2) )) _ 3

m+1)(m+2)(m+3

Observe that exactly one af, m — 1, andm — 2 is divisible by3. Moreover, asn = 3 - 2¥ it
follows thatvs(m) = 1, v3(m — 1) = 0, andvs(m — 2) = 0. Similarly, exactly one ofn + 1,
m + 2, andm + 3 is divisible by3. Further, ask = 3 or 15 (mod 18) Lemma[ implies that
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322 +1. Asm+3 =3-2"+3 =3-(2"+ 1) we see thats(m +3) = 1 +2 = 3, and
v3(m + 1) = v3(m + 2) = 0. Therefore, we have

v3(bs) = v3(bo) + v3(m) + v3(m — 1) + v3(m — 2)
—v3(6) —v3(m + 1) —v3(m +2) — vs(m + 3)
=v3(bg) +14+0+0—-14+0+0—3=w3(by) — 3.

The claim follows and we have;(A) = 3 + v3(b3) = 3 + v3(by) — 3 = v3(by) = s. Hence, we
havevs(D) = v3(A) = s.

Also, 15(C) = va(2m? - 6™71) = 15(2 - 6™ ) + 1a(m?) = m + 2k > m. Also, v3(C) =
0+2+ (m—1)=m+1>m. Thereforeged(4, B,C) = 23/ with1 <i <mandl < j < s.
We deduce thatcd(A, B,C) > 1 andged(A, B,C)|D. It follows that there exists integets v,
andt such thatdu + Bv + Ct = —D.

Finally, we construct a reduciblgz) by takinga,, = ay = 1, a3 = u, agx = 2v, a1 = t,
anda; = 0for j & {0, 3,2%, m — 1,m}. Thus, we have

g(x) = 2™ + 2m2ta™ ! + 2vkax2k + ubsx® + by.
Observe that

g(6) = 6™ + 2m2t - 6™ ' + 20bp 6% + ubs6® + by
=6"+ Ct+ Bv+ Au+ by
=D+Ct+Bv+ Au=0.

Thus,¢(z) has a linear factor, namely,— 6. The fact thatA is infinite follows from the fact that
there are infinitely many distinct degre@swhich produce a reducible polynomial for some choice
of the integers.;.
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