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1. Introduction

Throughout this paper, we refer to the non-cyclotomic part of a polynomial
f(x) 2 Z[x] as f(x) with its cyclotomic factors removed. More speci�cally, if
�g1(x); : : : ;�gr(x) are non-cyclotomic irreducible polynomials in Z[x] and
gr+1(x); : : : ; gs(x) are cyclotomic polynomials such that f(x) = g1(x) � � �gr(x)�
�gr+1(x) � � � � � �gs(x), then g1(x) � � �gr(x) is the non-cyclotomic part of f(x). We
refer to a polynomial f(x) 2Z[x] of degree n as reciprocal if f(x) = �xnf(1=x).
We refer to xnf(1=x) as the reciprocal of f(x). Analogous to our �rst de�nition, we
refer to the non-reciprocal part of f(x) 2Z[x] as f(x) with the irreducible recipro-
cal factors having positive leading coe�cient removed. Here and throughout this
paper we refer to irreducibility over the integers so that the irreducible polynomi-
als under consideration have integer coe�cients and content one. Observe that a
reciprocal polynomial may be equal to its non-reciprocal part as is the case, for
example, with x6 + x5 + x4 + 3x3 + x2 + x+ 1 which factors as a product of two
non-reciprocal irreducible polynomials.

In 1956, E.S. Selmer [8] investigated the irreducibility over the rationals of
the trinomials xn + "1x

a + "2 where n > a > 0 and each "j 2 f�1; 1g. He ob-
tained complete solutions in the case a = 1 and partial results for a > 1. In 1960,
W. Ljunggren [2] extended Selmer's work to deal generally with the case when
a � 1. In addition, he studied the quadrinomials xn+ "1x

b+ "2x
a+ "3 where each

"j 2 f�1; 1g and n > b > a > 0. There was a correctable error in Ljunggren's work
involving the omission of certain cases; this was noted in 1985 by W.H. Mills [3]
who �lled in the gaps of Ljunggren's arguments. It was established that the non-
cyclotomic parts of the trinomials above are irreducible or, in the case that every
factor is cyclotomic, identically 1. (Throughout this paper we view the polynomials
�1 as neither reducible nor irreducible.) In the case of quadrinomials, the analo-
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gous result does not hold, but W.H. Mills classi�ed those quadrinomials above for
which the non-cyclotomic part is reducible.

Recently, in [1], Solan and the author showed that if f(x) = xn+xc+xb+xa+1
where n > c > b > a > 0, then the non-reciprocal part of f(x) is either irreducible
or identically one. It is unknown whether the same result holds if \non-reciprocal"
is replaced by \non-cyclotomic". The example

(1) x11 + x8 + x6 + x2 + x+ 1 = (x5 � x3 + 1)(x4 + x+ 1)(x2 + 1)

shows that the result of Solan and the author cannot be extended to six terms.
A natural question is: can such results be generalized? In 1969, A. Schinzel [4]

published a remarkable paper which leads to an a�rmative answer to this ques-
tion. A consequence (not an obvious one) of his even more general results is the
following:

Theorem 1 (Schinzel). Let r be a positive integer, and �x non-zero integers

a0; : : : ; ar. Let F (x1; : : : ; xr) = arxr + � � � + a1x1 + a0. Then there exist two �-

nite sets S and T of matrices satisfying :
(i) Each matrix in S or T is an r � � matrix with integer entries and of rank �

for some � � r.

(ii) The matrices in S and T are computable.

(iii) For every set of positive integers d1; : : : ; dr with d1 < d2 < � � � < dr, the non-

reciprocal part of F (xd1 ; : : : ; xdr) is reducible if and only if there is an r � �

matrix N = (vij) in S and integers v1; : : : ; v� satisfying

0
BB@
d1
d2
...

dr

1
CCA = N

0
BB@
v1
v2
...

v�

1
CCA

but there is no r � �0 matrix M in T with �0 < � and no integers v01; : : : ; v
0
�0

satisfying 0
BB@
d1
d2
...

dr

1
CCA = M

0
BB@

v01
v02
...

v0�0

1
CCA :

Moreover, Schinzel's results imply that the polynomials F (xd1 ; : : : ; xdr ) with
reducible non-reciprocal part can be factored as a product of polynomials with
non-reciprocal irreducible parts where the factors can be described explicitly in
terms of the matrix N occurring in (iii). Finally, we note that Schinzel also dealt
with the case that F (x1; : : : ; xr) is non-linear.

We emphasize the consequence stated above of Schinzel's result as it describes
one of the main objectives of this paper. We will be interested in showing how
to classify all polynomials f(x) =

Pn
j=0 ajx

j 2 Z[x] with a �xed value of the
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Euclidean norm kfk = (
Pn

j=0 a
2
j)
1=2 for which the non-reciprocal part of f(x) is

irreducible. The above theorem indicates that an algorithm exists for doing this, or
more precisely for classifying the polynomials f(x) having a �xed Euclidean norm
and for which the non-reciprocal part of f(x) is reducible. However, our approach
will not be to use the above theorem directly. Instead we base our approach on the
work of Ljunggren [2]. Certain aspects of Schinzel's own work (cf. [4, 5]) make use
of Ljunggren's ideas, and much of what we do here will bear similarities to these
aspects of Schinzel's work.

As an example of the type of result we can obtain by our methods, we es-
tablish an explicit theorem in the case that f(x) is a polynomial of the form
xn + xd + xc + xb + xa + 1. To describe the result, we recall the example given
in (1). From one example, we can obtain others as follows. Take any zero or more
of the non-reciprocal irreducible factors with positive leading coe�cient of a given
example f(x), and consider the product of the reciprocals of these factors with the
remaining irreducible factors of f(x). As we shall see in Section 3 (see Lemma 3),
the product obtained will have the same Euclidean norm as f(x) and, in the case
that f(x) is a polynomial with each coe�cient either 0 or 1, the product obtained
will also be a polynomial with each coe�cient either 0 or 1. For example, from (1),
we obtain (1) itself together with the examples

(x5 � x2 + 1)(x4 + x+ 1)(x2 + 1) = x11 + x9 + x7 + x6 + x+ 1;

(x5 � x3 + 1)(x4 + x3 + 1)(x2 + 1) = x11 + x10 + x5 + x4 + x2 + 1;

and

(x5 � x2 + 1)(x4 + x3 + 1)(x2 + 1) = x11 + x10 + x9 + x5 + x3 + 1;

each of which has a reducible non-reciprocal part. To simplify the statement of
our next result, we refer to examples obtained from a given example as described
above as being variations of the given example.

Theorem 2. Let a, b, c, d, and n be positive integers satisfying a < b < c < d < n,

and let f(x) = xn+ xd + xc + xb+ xa + 1. Then the non-reciprocal part of f(x) is
reducible if and only if f(x) is a variation (as described above) of

f(x) = x5s+3t + x4s+2t + x2s+2t+ xt + xs + 1

= (x3s+2t � xs+t + xt + 1)(x2s+t + xs + 1)

where s and t denote arbitrary distinct positive integers.

The two factors given for f(x) above are such that their non-reciprocal parts
are irreducible so that there are four variations of f(x). That the two factors
of f(x) have irreducible non-reciprocal parts follows from our approach, but in
fact something stronger holds as the results of Ljunggren and Mills mentioned
earlier imply the non-cyclotomic parts of these factors are irreducible as well.
Observe that (1) is the case s = 1 and t = 2 above.

It is of some interest to relate the above theorem to Schinzel's theorem. In
Schinzel's theorem, we take r = 5, F (x1; x2; x3; x4; x5) = x5+x4+x3+x2+x1+1,
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d1 = a, d2 = b, d3 = c, d4 = d, d5 = n, v1 = s, and v2 = t. According to the above
theorem, a matrix equation as in the �rst part of (iii) of Schinzel's theorem is

0
BBB@

a

b

c

d

n

1
CCCA =

0
BBB@

1 0
0 1
2 2
4 2
5 3

1
CCCA
�
s

t

�
:

In the case of this F (x1; x2; x3; x4; x5), the set S in Schinzel's theorem includes the
5�2 matrix in the above display, the matrix obtained by interchanging its columns,
as well as other matrices obtained by considering variations of the factorization
given in Theorem 2; the set T is the empty set.

The remainder of the paper is organized as follows. In the next section, we
explain a method which, given F (x1; : : : ; xr) = arxr + : : :+ a1x1 + a0 as in The-
orem 1, classi�es the positive integers d1; : : : ; dr for which the non-reciprocal part
of F (xd1 ; : : : ; xdr ) is reducible. In Section 3, we show how to use a modi�cation
of this approach to establish Theorem 2. We clarify here that our proof is compu-
tational and relies on numerous cases that we resolved using MAPLE, a symbolic
package. In Section 4, we use the ideas from Sections 2 and 3 to establish the
following results.

Theorem 3. Let f(x) be an irreducible non-reciprocal polynomial having each

coe�cient either 0 or 1 and constant term 1. Then for each positive integer `, the

polynomial f(x`) is irreducible.

This theorem will be obtained without the use of Capelli's theorem (cf. [7]), and
it would be of some interest to know an alternative argument based on Capelli's
theorem. Equivalently, it is easy to see that if � is a root of an f(x) satisfying the
conditions in Theorem 3, then Theorem 3 implies that for every positive integer `
the polynomial x` � � does not factor in Q(�)[x]; we ask for a direct argument
for establishing the irreducibility of x` � � in Q(�)[x]. In addition, it would be of
interest to know whether \non-reciprocal" can be replaced by \non-cyclotomic"
in the statement of Theorem 3.

Our next result shows that if a polynomialwith coe�cients 0 and 1 is su�ciently
lacunary, then its non-reciprocal part must be irreducible or identically one.

Theorem 4. Let f(x) =
Pr

j=0 x
dj be such that 0 = d0 < d1 < : : : < dr. Then there

exists an absolute constant C > 0 such that if dj+1 > Cdj for each j 2 f1; 2; : : :
: : : ; r � 1g, then the non-reciprocal part of f(x) is either irreducible or identically

one. Furthermore, if C0 denotes the in�mum of such C, then

1 +
p
3

2
� C0 � 1 +

p
5

2
:

It would be of interest to know the precise value of C0. If the dj are de�ned
to be the Fibonacci numbers beginning with d1 = 1 and d2 = 2, then Theorem 4
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does not apply; however, a modi�cation of the approach can be used to show that
the non-reciprocal part of f(x) =

Pr

j=0 x
dj is irreducible for all r and this choice

of dj. We note that this f(x) is not always irreducible but conjecture that it is
irreducible unless r 2 f3; 5; 8; 11g.

We also note that our approach can be used to prove the existence of a bound
on the number of non-reciprocal irreducible factors of a polynomial f(x) that
depends only on kfk and not on deg f . That such bounds exist was �rst noticed
by Schinzel in [4]. A very nice estimate of this sort (which is considerably stronger
than what we can obtain here) was given later by Schinzel in [5, p. 234].

Finally, we mention that Douglas Meade and the author have used ideas in this
paper to write MAPLE programs which (i) determine whether a given polynomial
f(x) having each coe�cient 0 or 1 is irreducible and (ii) determine whether the
non-reciprocal part of such an f(x) is irreducible. The programs work best when
f(x) is non-reciprocal, lacunary, and contains a small number of coe�cients (say
< 50) which are one. The results in this paper are used to aid with (ii) and can
be applied to random polynomials of degree as large as 10100000. An additional
step for (i) is used to determine whether f(x) has a reciprocal factor. This can
be done by checking whether gcd(f(x); xdeg ff(1=x)) = 1, but unfortunately com-
puting the greatest common divisor by the Euclidean algorithm can take on the
order of O(deg f) steps. We modify this slightly by considering computations mod-
ulo primes, but determining whether gcd(f(x); xdeg ff(1=x)) = 1 is still the most
costly part of the program. For (i), our program can readily handle polynomi-
als of degree � 20000. The results of this paper, therefore, raise the question of
whether an e�cient algorithm can be found for determining if a given lacunary
polynomial has a reciprocal factor (in particular, to handle lacunary polynomials
with coe�cients 0 and 1 and degree say � 10100). More details including running
times and comparisons with MAPLE's built-in irreducibility test will be given in
a subsequent paper. In addition, we currently have an interactive version of the
program available on the World Wide Web through the URL

http://www.math.sc.edu/~filaseta/irreduc.html

2. The general approach

We suppose initially that we are given a speci�c polynomialf(x) 2Z[x] of degree n,
and we wish to determine whether its non-reciprocal part is irreducible. The case
when f(0) = 0 can be dealt with by setting g(x) = f(x)=x. Note that x is not
reciprocal. If g(0) = 0, then the non-reciprocal part of f(x) is reducible (it's
divisible by x2). If g(x) is not reciprocal, then g(x) must have a non-reciprocal
factor so that here also the non-reciprocal part of f(x) is reducible. Thus, we are
left with considering the case where g(0) 6= 0 and g(x) is reciprocal. In this case,
g(x) is divisible by a non-reciprocal polynomial if and only if the non-reciprocal
part of g(x) is reducible (since a reciprocal polynomial cannot be divisible by
exactly one non-reciprocal irreducible polynomial). Thus, if f(0) = 0, then to
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determine whether the non-reciprocal part of f(x) is irreducible, we are left with
considering whether the non-reciprocal part of another polynomial g(x) 2 Z[x]
is irreducible where g(0) 6= 0. We may therefore suppose in what follows that
f(0) 6= 0, and we do so.

We refer to the reciprocal of f(x) as ~f (x) (and likewise for other polynomials).
We begin with an idea of Ljunggren [2]. We suppose for the moment that the non-
reciprocal part of f(x) is reducible. It follows (cf. [1]) that there are non-reciprocal
polynomials u(x) and v(x) inZ[x] such that f(x) = u(x)v(x). Ljunggren observed
that we can obtain important information about the non-reciprocal part of f(x)
by considering the polynomial w(x) = u(x)~v(x). The condition f(0) 6= 0 implies
that each of f(x), ~f (x), w(x), and ew(x) has non-zero constant term and degree n.

This implies f(x) =
~~f (x) with a similar equation holding for w(x), u(x), and v(x).

Note that the coe�cient of xn in f(x) ~f (x) is kfk2 and the coe�cient of xn in
w(x) ew(x) is kwk2. Of signi�cance here is that
(2) f(x) ~f (x) = u(x)v(x)~u(x)~v(x) = w(x) ew(x):
We deduce then that kfk = kwk. In [2], Ljunggren considered the case when f(x)
has four non-zero coe�cients each of which is �1. In this case, (2) implies kwk = 2
which in turn implies that w(x) has exactly four non-zero coe�cients each of which
is �1. To obtain his results, Ljunggren proceeded to do a case analysis to show
that if w(x) satis�es w(x) ew(x) = f(x) ~f (x), then w(x) = �f(x) or w(x) = � ~f (x).
This implies v(x) or u(x), respectively, must be reciprocal, giving a contradiction.
In this section, we show in the general situation of f(x) 2Z[x], a similar analysis
can always be done.

We write

(3) f(x) =

rX
j=0

ajx
dj and w(x) =

sX
j=0

bjx
kj ;

where we view the aj's and dj's as given integers and the bj 's and kj's as unknown
integers with

(4)
0 = d0 < d1 < : : : < dr�1 < dr = n and

0 = k0 < k1 < : : : < ks�1 < ks = n

(so our use of \unknown" is misleading in the case of k0 and ks). We also suppose
that each aj and bj is non-zero.

Lemma 1. The non-reciprocal part of f(x) is reducible if and only if there exists

w(x) di�erent from �f(x) and � ~f (x) such that w(x) ew(x) = f(x) ~f (x).

Proof. If the non-reciprocal part of f(x) is reducible, then we have already seen that
there exists w(x) satisfying (2). Observe that u(x) and v(x) being non-reciprocal
and the de�nition of w(x) above implies that w(x) is di�erent from both �f(x)
and � ~f (x).
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Now, suppose we know there exists w(x) di�erent from �f(x) and � ~f (x) such
that w(x) ew(x) = f(x) ~f (x), and assume the non-reciprocal part of f(x) is irre-
ducible or identically �1. We write f(x) = g(x)h(x) where each irreducible fac-
tor of g(x) is non-reciprocal and each irreducible factor of h(x) is reciprocal. By
assumption, g(x) has at most one irreducible factor. Observe that f(x) ~f (x) =
�g(x)~g(x)h2(x). Using w(x) ew(x) = f(x) ~f (x), it is easy to see that w(x) =
�g(x)h(x) = �f(x) or w(x) = �~g(x)h(x) = � ~f (x), a contradiction. The lemma
now follows. ut

Given Lemma 1, our goal now is to determine whether there exists w(x) dif-
ferent from �f(x) and � ~f (x) such that w(x) ew(x) = f(x) ~f (x). As noted earlier,
we have kfk = kwk. We immediately deduce that

Ps
j=0 jbjj � kfk2. We count the

number of ways of taking kfk2 + 1 ones and dividing them into kfk2 + 1 ordered
containers so that the number of ones in the containers are jb0j; jb1j; : : : ; jbsj, and
kfk2+1�Ps

j=0 jbjj, with any remaining kfk2�s�1 containers being empty. Allow-

ing for the 2s+1 � 2kfk
2

signs for b0; : : : ; bs, we obtain that the number of di�erent
possibilities for s together with the (s + 1)-tuple (b0; b1; : : : ; bs) is bounded by

2kfk
2 �

�
2kfk2 + 1

kfk2
�
� 23kfk

2

:

Observe that this bound is independent of the degree n of the given polynomial
f(x).

Our goal now is to determine the possible values for the (s+1)-tuple (k0; k1; : : :
: : : ; ks). We do this by solving a system of linear equations in the unknowns
k0; k1; : : : ; ks. We obtain these equations by expanding the left and right sides
of (2) and comparing exponents. The exponents appearing on the left side depend
only on f(x) and, hence, are �xed. The exponents appearing on the right side are
linear combinations in the unknowns kj. Equation (2) implies that these exponents
must be the same. The idea is to consider every possible matching of the exponents
on the left side with the right side. Each matching of exponents corresponds to a
system of equations which we attempt to solve. If a solution (k0; k1; : : : ; ks) exists,
we consider the various possibilities for (b0; b1; : : : ; bs) discussed above and form
polynomials w(x). If we determine a w(x) di�erent from �f(x) and � ~f (x) satisfy-
ing (2), then Lemma 1 implies that the non-reciprocal part of f(x) is reducible. If

after considering all possible (k0; k1; : : : ; ks) and (b0; b1; : : : ; bs) as just described,
there is no such w(x), then Lemma 1 implies the non-reciprocal part of f(x) is
irreducible or �1.

When comparing exponents on the left and right side of (2), we need to be
careful as cancellation of terms can occur. To be more precise, the complete set of
exponents on the right side can be written as

E = fn� kj + ki : 0 � i; j � sg:
A particular solution for (k0; k1; : : : ; ks) that we seek may cause two or more
elements from E to be the same. Then depending on (b0; b1; : : : ; bs), these equal
elements from E may not be equal to any of the exponents appearing on the left
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side of (2) (as the sum of the coe�cients corresponding to these powers of x may
be zero). As suggested by these remarks, we must also account for the possibility
that a solution (k0; k1; : : : ; ks) causes some elements of E to be equal.

We proceed as follows. We observe that for (2) to hold, each element of E
must either be equal to an exponent which appears on the left side of (2) or must
be equal to a second expression from E. We consider every possible system of
equations, each system consisting of equations formed by setting an element of E
equal to either an exponent appearing on the left side of (2) or a second element
from E. We do this in such a way that (i) each element of E occurs in such an
equation at least once, (ii) every exponent on the left side of (2) is used exactly
once, and (iii) the equations n� ks + k0 = 0 and n � k0 + ks = 2n are used. We
only allow equations of the form n � kj + ki = n � kv + ku if (i; j) 6= (u; v). We
modify the systems slightly by replacing the two equations in (iii) with k0 = 0
and ks = n. Observe that if e1; e2; : : : ; et are elements of E which are equal to the
same exponent m appearing on the left of (2), then (ii) can hold by considering
the equations e1 = m; e2 = e1; : : : ; et = e1. Also, k0 = 0 and ks = n are necessary
for (4) to hold and they imply that the equations in (iii) hold.

We do not seek to obtain systems of equations with every solution (k0; k1; : : :
: : : ; ks) of a system corresponding to some solution of (2); but we do want each
solution of (2) to correspond to a solution of at least one of these systems of
equations. In particular, if we have a system of equations as above which contains
each equation in a second such system of equations, we do not need to consider the
�rst system of equations (any choice of (k0; k1; : : : ; ks) satisfying the �rst system
will also satisfy the second).

Now, suppose we have a system of equations as above. One of the following
three possibilities may occur: (i0) the system has a unique solution (in Rs+1),
(ii0) the system has no solutions, or (iii0) the system has in�nitely many solutions.
From our point of view, the cases (i0) and (ii0) are ideal. If (i0) occurs, then we go
through each possibility for (b0; b1; : : : ; bs), form polynomialsw(x), and see if each
such w(x) is di�erent from �f(x) and � ~f (x) and satis�es (2). If (ii0) occurs, then
there is no w(x) corresponding to the system of equations under consideration. We
have some di�culty if (iii0) occurs because then we seemingly must determine those
solutions (k0; k1; : : : ; ks) satisfying (4) and then consider each such solution as a
possible list of exponents for w(x). To alleviate this situation, we will show that
each system satisfying (iii0) cannot correspond to an appropriate list of exponents
for w(x). More speci�cally, we show that if (iii0) holds and k0; k1; : : : ; ks is a solution
to the system, then it cannot be the case that the kj are distinct (so (4) cannot
hold). This follows as a consequence of the matrix B in [4, p. 133; 6, p. 291]
having rank ` as established there; we give an alternative approach here (which
nevertheless bears some similarities to the Remark of [4, p. 134]).

Lemma 2. Let s and t be positive integers. Suppose a system of linear equations

in the variables x0; : : : ; xs is of the form

�i0x0 + �i1x1 + : : :+ �isxs = �i for 1 � i � t;
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where the �ij and �i are all inZ. Suppose further that the system of equations has

in�nitely many solutions (x0; : : : ; xs) 2 Rs+1. If the system has at least one solu-

tion (x0; : : : ; xs) 2Zs+1 with x0; x1; : : : ; xs distinct, then the system has in�nitely

many such solutions.

The proof of the lemma can be modi�ed to show that if there is at least one
solution (x0; : : : ; xs) 2 Rs+1 with x0; x1; : : : ; xs distinct, then the system has in-
�nitely many solutions (x0; : : : ; xs) 2 Qs+1 with x0; x1; : : : ; xs distinct. However,
it is possible that distinct solutions exist in Qs+1 but not in Zs+1. It would be
possible to work with a version of the lemma dealing with distinct rational solu-
tions rather than distinct integer solutions, but the lemma as stated will make the
arguments more direct.

Before proving the lemma, we show that it gives us what we want. Suppose
we have a system of equations as constructed above for which (iii0) occurs. We
view the variables as x0; x1; : : : ; xs, and suppose further that there is a solution
(k0; k1; : : : ; ks) to our system that satis�es (2) and (4). In particular, (4) and
Lemma 2 imply that the system has in�nitely many solutions in distinct integers.
Then there must be a solution (k00; k

0
1; : : : ; k

0
s) consisting of distinct integers with

either min0�j�sfk0jg < 0 or max0�j�sfk0jg > n. We �x such a solution and de-
�ne u and v by k0u = min0�j�sfk0jg and k0v = max0�j�sfk0jg. Note that since
k00; k

0
1; : : : ; k

0
s are distinct, u and v are uniquely determined. Also, either k0u < 0

or k0v > n. Since our system under consideration requires k00 = 0 and k0s = n, the
de�nition of u and v implies k0u � 0 and k0v � n. We deduce that k0v � k0u � n+ 1.
This means that n�k0v+k0u � �1. On the other hand, our system of equations in-
cludes an equation either of the form n�xv+xu = n�xj +xi with (u; v) 6= (i; j)
or of the form n � xv + xu = m for some exponent m appearing on the left
of (2). The former cannot happen as it would imply n � k0v + k0u = n � k0j + k0i
which is impossible as k00; k

0
1; : : : ; k

0
s being distinct and the de�nition of u and v

imply n � k0v + k0u < n � k0j + k0i whenever (u; v) 6= (i; j). On the other hand,
n�k0v+k0u � �1 and so it cannot be an exponent on the left side of (2). Thus, we
have a contradiction. This implies each system as in (iii0) cannot have a solution
(k0; k1; : : : ; ks) satisfying (2) and (4) as promised.

Proof of Lemma 2. Consider the t � (s + 1) matrix A = (�i;j�1), and let � be
the rank of A. Then there are � linearly independent rows of A which, together

with the corresponding values of �i, determine the solution set of the equations.
By rearranging the equations if necessary, we may suppose the �rst � rows of A
are linearly independent. By Gaussian elimination, we can solve for some � of the
unknowns x0; : : : ; xs in terms of the others. We may suppose these � unknowns
are x0; : : : ; x��1 and do so. Considering the �rst � rows and � columns of A, we
obtain a �� � matrix B with non-zero determinant. Set D = jdetBj � 1. It is not
di�cult to see that the general solution to the system of equations can be written
in the form

(5) xi =
1

D

�
ci +

sX
j=�

bijxj

�
for 0 � i � � � 1:
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Here, B~u = ~v where ~u is the column vector with (i+ 1)st entry ci=D and ~v is the
column vector with ith entry �i; and for j 2 f�; : : : ; sg we have B~uj = ~vj where
~uj is the column vector with (i + 1)st entry bij=D and ~vj is the column vector
consisting of the �rst � elements in the jth column of A. Cramer's Rule guarantees
that each ci and bij is in Z.

We �x a solution (k0; k1; : : : ; ks) consisting of distinct integers (such a solution
exists by the conditions in the lemma). We choose positive integers `�; `�+1; : : : ; `s
inductively satisfying the inequality

(6) `m > 2 max
0�i�s

fjkijg+ 2 max
0�i�s

nm�1X
j=�

jbijj`i
o
+ 2D max

��i�m�1
f`ig

for m = �; � + 1; : : : ; s. We de�ne k0i = ki + `iD for � � i � s. For 0 � i � � � 1,
k0i is de�ned using (5) so that (k00; : : : ; k

0
s) is a solution to our system of equations.

Thus,

k0i =
1

D

�
ci +

sX
j=�

bijk
0
j

�
= ki +

sX
j=�

bij`j for 0 � i � � � 1:

Clearly, each k0i 2 Z. Considering each of the cases i � �, i < � � j, and j < �

separately and using (6), it is not di�cult to establish that k0i 6= k0j whenever
0 � i < j � s. The lemma then follows. ut

The above describes our approach for establishing whether the non-reciprocal
part of a given f(x) 2 Z[x] is irreducible. It is an easy matter to obtain some
estimate for the total number of numbers s, coe�cient vectors (b0; b1; : : : ; bs), and
exponent vectors (k0; k1; : : : ; ks) that we need consider in the above approach. We
obtained the upper bound

exp(4kfk2(kfk2 + 2) logkfk):
The details are omitted.

We consider next a polynomial f(x) with variable exponents. More precisely,
we consider f(x) = arx

dr
r + : : :+ a1x

d1
1 + a0, and analogous to Theorem 1 we seek

to describe the r-tuples (d1; : : : ; dr) for which the non-reciprocal part of f(x) is
reducible. The strategy we proceed with is the same as before. We want to deter-

mine when a polynomial w(x) exists satisfying (2), (3), and (4) that is di�erent
from�f(x) and � ~f (x). We deal with the possibilities for the coe�cients of w(x) as
before, and we consider various systems of equations with the unknowns being the
exponents k0; k1; : : : ; ks appearing in w(x). The condition (ii) needs to be modi�ed
as we do not know which exponents on the left side of (2) are equal or are cancelled
(appear with coe�cient zero). We therefore modify the situation by considering
every possibility for equal exponents and cancelled exponents on the left. With
each �xed possibility, we proceed as before with now condition (ii) an acceptable
one (we use every distinct exponent which appears on the left with the given possi-
bility for equal exponents we are considering and we ignore those exponents being
cancelled). By the comments above concerning (iii0), we need only consider the sys-
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tems where there is a unique solution for the exponents k0; k1; : : : ; ks in terms of
d1; : : : ; dr. Once we determine a possible list of exponents for w(x), we go through
each possibility for the coe�cients and compare both sides of (2). At this point,
the coe�cients have been made explicit and the only unknowns are d1; : : : ; dr.
We go through a new collection of systems of equations in these unknowns deter-
mined by considering possible matchings of the exponents (from comparing the
left and right sides of (2) and allowing for possible cancellation of terms on both
sides). This time the possibility of having a system with in�nitely many solutions
is of no concern to us; this will occur as it apparently does in the case of Theo-
rem 2. By Lemma 1, if we �nd a solution set that gives us both (2) and (4) with
w(x) di�erent from �f(x) and � ~f (x), we have a classi�cation of f(x) of the form
arx

dr
r + : : : + a1x

d1
1 + a0 giving polynomials with reducible non-reciprocal part.

Once we have completed going through the systems of equations and all possible
coe�cients, every possible f(x) of this form with reducible non-reciprocal part will
fall into one of the classi�cations obtained.

In the next section, we outline the proof of Theorem 2 and indicate some ideas
which will reduce the number of computations discussed above in order to obtain
such a result. There are some simpli�cations that are particular to the study of
polynomials having each coe�cient either 0 or 1, but some of the ideas can be
used in the more general setting.

3. The proof of Theorem 2

In the previous section, we considered �xed integers a0; a1; : : : ; ar and described
a method for resolving when the polynomial f(x) = arx

dr
r + : : :+ a1x

d1
1 + a0 has

irreducible non-reciprocal part. In this section, we focus on the special case when
a0 = a1 = : : : = ar = 1, though some of our comments will apply to the more
general situation. In particular, we describe the proof of Theorem 2. We begin by
showing that whenever every aj = 1, the coe�cients in the polynomial w(x) can
be described precisely.

Lemma 3. Let f(x) and w(x) satisfy (2), (3), and (4). If aj = 1 for every

j 2 f0; 1; : : : ; rg and bs > 0, then s = r and bj = 1 for every j 2 f0; 1; : : :; rg.

Proof. As discussed earlier, equation (2) implies kfk = kwk. Therefore,
rX

j=0

a2j =

sX
j=0

b2j :

Also, since ~f (1) = f(1) and ew(1) = w(1), (2) implies f(1)2 = w(1)2. Since aj = 1
for each j, we obtain

� sX
j=0

bj

�2
�
� sX
j=0

b2j

�2
=
� rX
j=0

a2j

�2
=
� rX
j=0

aj

�2
=
� sX
j=0

bj

�2
:
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We deduce that equality holds in the inequality above which, given that bs > 0,
can only occur if every bj = 1. Since kfk = kwk, we obtain the condition s = r.ut

The condition bs > 0 is of no real importance. We can replace any w(x) satis-
fying (2) with �w(x) and the conditions (2), (3), and (4) will remain valid. Thus,
given Lemma 1, we are left with determining whether there is a polynomial w(x),
di�erent from �f(x) and � ~f (x), satisfying (2), (3), and (4) with s = r and bj = 1
for every j 2 f0; 1; : : : ; rg.

For more general polynomials f(x), there are some modi�cations of the tech-
nique described in Section 2 that we will want to make use of in this section. In
comparing exponents on the left and right of (2), we need not compare the com-
plete set of exponents. Each side of (2) is a reciprocal polynomial of degree 2n so
that it is only necessary to compare the exponents of the terms of degree � n.
In the case of f(x) as in Lemma 3, we will be only considering w(x) with r + 1
non-zero coe�cients each of value 1. This will imply that the coe�cients of xn on
both sides of (2) are the same. Hence, in this case, we need only compare those
terms of degree < n in (2).

Now, we turn to another modi�cation of the technique described in Section 2
that can be used when considering a general polynomial f(x). We will make use
of the following result.

Lemma 4. Let m be a positive integer. Let f1; f2; : : : ; fm be arbitrary real num-

bers with at least one non-zero. Then there exist distinct integers x1; x2; : : : ; xm
satisfying

(7) f1x1 + f2x2 + : : :+ fmxm � 0 and 0 < x1 < x2 < : : : < xm

if and only if for some k 2 f1; 2; : : : ;mg the sum
Pm

j=k fj is positive.

Proof. Suppose �rst that there is a k 2 f1; 2; : : : ;mg for which
Pm

j=k fj > 0. Let
m0 be a positive integer satisfying

m0 > m
� mX

j=1

jfj j
�.� mX

j=k

fj

�
:

Then it follows that

f1 + 2f2 + : : :+ (k � 1)fk�1 +m0fk + (m0 + 1)fk+1 + : : :+ (m0 +m � k)fm

� m0(fk + fk+1 + : : :+ fm)�maxfk � 1;m� kg
mX
j=1

jfjj:

The choice of m0 implies the last expression above is positive. Hence, to obtain (7),
we can take xj = j for 1 � j � k� 1 and xj = m0+ j � k for k � j � m where m0

is a su�ciently large positive integer.
Now, suppose we know there exist distinct positive integers x1; x2; : : : ; xm sat-

isfying (7) and we want to show
Pm

j=k fj > 0 for some k 2 f1; 2; : : :;mg. Assume
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to the contrary that
Pm

j=k fj � 0 for every k 2 f1; 2; : : : ;mg. Observe that
mX
j=1

fjxj = x1

mX
j=1

fj + (x2 � x1)

mX
j=2

fj(8)

+ (x3 � x2)

mX
j=3

fj + : : :+ (xm � xm�1)

mX
j=m

fj :

Each sum on the right is � 0 by assumption and each of the expressions x1
and xj � xj�1 for 2 � j � m is positive by (7). Therefore, we deduce thatPm

j=1 fjxj � 0. We have a contradiction to (7) unless equality holds. On the other
hand, equality holds only if each sum in (8) is equal to 0. It is easy to see that
the condition that at least one fj is non-zero implies that at least one of the
sums in (8) is non-zero. Again, we obtain a contradiction. It follows that for some
k 2 f1; 2; : : :;mg we must have

Pm
j=k fj > 0. ut

The purpose of Lemma 4 is to enable us to reduce the number of systems of
equations we need to consider when comparing exponents on the left and right
of (2). This is achieved by using Lemma 4 to determine what the least possible
exponents can be on the left and right of (2). Then we go through the di�erent
possibilities for the least exponents being equal to one another. Once we determine
an equation by comparing two least exponents, we obtain information from this
equation and plug the information into the list of exponents on the left and right
of (2). We combine and cancel terms with equal exponents that the one equation
has produced, and we repeat the process of �nding the least possible exponents,
forming an equation, plugging in the information the equation gives, and combining
like terms. We repeat the process until we obtain a situation where (2) holds and
we can use Lemma 1 or until we obtain a contradiction. The latter can occur if
there is one possible least exponent determined by Lemma 4 occurring on only one
side of (2) (so a term occurs only on one side of (2) and equality cannot hold). If
no contradiction occurs and we determine a situation where (2) occurs but w(x)
is one of �f(x) and � ~f (x), we continue by going through other possibilities for
equations that have occurred earlier. This is the \idea" behind our use of Lemma4;
we turn now to some speci�cs by applying our approach to obtain Theorem 2.

As is evident in the statement of Lemma 3, an advantage of considering poly-
nomials f(x) with coe�cients just 0 and 1 is that we may suppose the polynomial
w(x) will also have coe�cients which are just 0 and 1. This helps directly with
analyzing the exponents in (2) as now all the non-zero coe�cients appearing in the
factors on the left and right are positive so that no cancellation of terms can occur
when we expand the left and right side of (2). We still need to concern ourselves
with the possibility of terms combining, but we need not concern ourselves with
the possibility that some terms combine to give a coe�cient of value 0.

To prove Theorem 2, we made use of MAPLE (Version V, Release 4), a symbolic
package, to deal with the various cases and systems of equations we needed to
consider. We expand the left and right side of (2) using (3) with s = r = 5,
a0 = a1 = : : : = a5 = 1, and b0 = b1 = : : : = b5 = 1. We also use the notation of
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the statement of Theorem 2 in discussing the exponents of f(x). The exponents of
interest to us are those which are < n, and for the left side of (2) the list of these
exponents is:

0; a; b; c; d; n� d; n� d+ a; n� d+ b; n� d+ c;

n� c; n � c+ a; n� c + b; n� b; n� b+ a; n � a:

The list for the exponents < n on the right is identical except with k1, k2, k3,
and k4 in place of a, b, c, and d, respectively. Observe that, in (2) and Lemma 1,
the roles of w(x) and ew(x) are interchangeable. In other words, if necessary we may
work with ew(x) instead of w(x). By doing this if necessary we may suppose that
k1 � n�k4 and do so. Similarly, as the non-reciprocal part of f(x) is irreducible if
and only if the non-reciprocal part of ~f (x) is irreducible, we may suppose a � n�d
and do so.

We now use the inequalities in (4) to determine the least possible �ve exponents
on the left and right of (2) (after it is expanded). On the left, the least two
exponents are 0 and a; the latter holds as we know a � n� d and we are making
no claims that there is only one exponent having the value of a. The next three
least exponents have thirteen possibilities which we list as triples, the elements of
each triple being listed from least to greatest. These triples are:

(b; c; d); (b; c; n� d); (b; n� d; c); (b; n� d; n� c); (b; n� d; n� d+ a);

(n � d; b; c); (n � d; b; n� d+ a); (n� d; b; n� c); (n � d; n� d+ a; b);

(n�d; n�d+a; n�c); (n�d; n�c; b); (n�d; n�c; n�d+a); (n�d; n�c; n�b):
The triples can be determined by using Lemma 4 or by direct considerations of
the exponents. An analogous situation exists for the least �ve exponents on the
right of (2) with a, b, c, and d replaced by k1, k2, k3, and k4. In particular, the
second least exponent on the right is k1 so that we deduce by comparing second
least exponents that k1 = a.

We use the 13 orderings of the least �ve exponents on the left of (2) and the 13
orderings of the least �ve exponents on the right to begin our comparison of the
exponents appearing in (2). We thus consider the 169 possibilities for what these
least �ve exponents on both sides can be. There are some observations that would
enable us to reduce the number of possibilities to consider, but there is no reason
to elaborate here on this (from a computational point of view, the 169 possibilities
are not hard to handle).

With each of these 169 possibilities we consider a corresponding system of
equations. There is no reason to consider the least two exponents appearing on
the left and right given that we already have determined that k1 = a so that these
exponents are the same. Thus, we are only using the triples listed above and the
corresponding triples for the exponents on the right. For example, if we take the
�rst possibility listed for a triple on the left, namely (b; c; d), with the possibility on
the right corresponding to the �fth triple listed, namely (k2; n�k4; n�k4+k1), we
get the equations k2 = b, n�k4 = c, and n�k4+k1 = d. There is one more initial
equation we consider before attempting to solve the system of equations. We sum
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the exponents on the left side of (2) which are < n and equate this to the sum of
the exponents < n on the right side of (2). We obtain 10n+3k1+ k2� k3� 3k4 =
10n+3a+b�c�3d. This equation is of value largely because it is an equation we can
use independent of which of the 169 cases we consider. We make the substitution
k1 = a to simplify any of the equations obtained thus far. In this example that
means we are left with the following equations:

(9) k2 = b; n � k4 = c; n� k4 + a = d; and k2 � k3 � 3k4 = b� c� 3d:

We now have four equations (three of which depend on which of the 169 cases we
are considering) that form our initial system of equations.

By our previous remarks, we know that if we consider enough such equations
(arising from comparing both sides of (2)) that we can ignore the system if no
solution or in�nitely many solutions exist for k2, k3, and k4. In fact, the four
equations obtained above in each of the 169 cases were su�cient for determining a
unique solution for k2, k3, and k4. It still may be the case when further equations
are considered the system becomes inconsistent; but regardless we know with these
four equations (one set of equations for each of 169 cases) if a solution exists when
we extend the system to include more equations by comparing further exponents
arising in (2), then the values for k2, k3, and k4 must agree with that obtained
from these four equations. Using MAPLE to analyze each of the 169 cases of four
equations obtained above, we attempt to solve the four equations for the variables
k2, k3, k4, as well as n. Our hope was that since we had four linear equations,
with any luck we should be able to solve for four of the variables. As it turns out,
it is not always possible to solve, from these four equations, for k2, k3, k4, and n

in terms of the remaining unknowns a, b, c, and d. It is not di�cult to see in fact
that no such solution exists when considering the equations given in (9). In such
situations, we attempt to solve the four equations for k2, k3, k4, and d in terms of
the remaining unknowns. In the case of (9), we deduce that

(10) k2 = b; k3 = �3n+ 7c+ 3a; k4 = n� c; and d = c+ a:

In general, however, it is not always possible to solve the four equations for k2, k3,
k4, and n or for k2, k3, k4, and d. In each of these cases it is possible to solve for
k2, k3, k4, and c (as we determined simply by performing the computations).

Rather than directly considering further equations arising from comparing ex-
ponents in (2), we �rst substitute the knowledge learned thus far into (2). In the
example we have been following, we consider the exponents we obtain in (2) af-
ter substituting for k2, k3, k4, and d using the equations in (10). We then cancel
the terms which occur on both sides. In our example, we are then left with the
exponents

(11) n� a; n � c; n� c+ a; n� c+ b; n � c� a; and n� c� a + b

on the left and the exponents

(12) c+ b; 4n� 7c� 2a; 4n� 7c� 3a;

4n� 7c� 3a+ b; �3n+ 7c+ 3a; and � 3n+ 8c+ 3a
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on the right. In general, we allow for possible duplication of exponents in each of
these lists.

Next, we determine the possible least elements that occur as exponents re-
maining on the left and right of (2). This is done by applying Lemma 4. In our
example, we use Lemma 4 to determine that the only possible least exponent ap-
pearing in (11) is n� c� a. It is reasonable to ask why one should use Lemma 4
here when it is clear by inspection that n�c�a is the least exponent. To clarify the
situation, we did not do these computations by hand. We programmedMAPLE to
perform the computations so that once we started the program we were only left
to intervene after we received examples of w(x) satisfying (2) and di�erent from
�f(x) and � ~f (x). We clarify what the output was below. Lemma 4 was used as
a method for programming MAPLE to compare a list of exponents such as those
given in (11) and (12). In the case of (12), Lemma 4 was used to determine that
the least exponent is one of c+ b, 4n�7c�3a, and �3n+7c+3a. To help explain
the use of Lemma 4, suppose we are given the two exponents 4n � 7c � 3a and
�3n+7c+3a and we want to know if the inequality 4n�7c�3a � �3n+7c+3a
can hold given that 0 < a < c < n. We rewrite the inequality as �7n+14c+6a � 0.
According to Lemma 4, this inequality is possible since �7+14 > 0. Observe that
Lemma 4 also implies that �3n + 7c + 3a � 4n � 7c � 3a can hold. Thus, the
list of minimal possible exponents in each of (11) and (12) is made by comparing
every pair of exponents in each list using Lemma 4. At this point, we have two
lists for the possible minimal exponent, one for the left side of (2) and one for
the right side. We do not stop the comparison of the exponents here. It is possi-
ble that these two lists of minimal possible exponents have some inconsistencies.
More speci�cally, we check to determine whether or not each element from one list
can actually be at least as small as each element from the other list. Again this
comparison can be done using Lemma 4. In the example, this comparison does not
reduce the sizes of the lists of minimal exponents we obtain. Observe that if the
least exponent remaining on one side of (2) is determined to be strictly less than
the least exponent remaining on the other side of (2) (i.e., if each exponent in the
latter list cannot be less than or equal to some exponent in the former list), then
we can stop the case under consideration for the exponents on the left and right
of (2) will not be equal.

The least exponent remaining on the left of (2) must equal the least exponent
remaining on the right of (2). This gives us another equation or, more precisely,
a list of possible equations. In the example, we deduce that one of the equations
n � c � a = c + b, n � c � a = 4n � 7c � 3a, and n � c � a = �3n + 7c + 3a
must hold. We consider each of these possibilities, solving the equation for one
variable in terms of the others. For example, for the last of these possibilities
n � c � a = �3n + 7c + 3a we might get a = n � 2c (I say \might" as I do not
claim that MAPLE will be consistent with which variable it solves for). We now
repeat the process described in the last two paragraphs. We substitute the new
information (in the example, a = n�2c) into the list of remaining exponents on the
left and right of (2) (in the example, into (11) and (12)), allowing for repetitions,
and cancelling like exponents. In our example, the substitution a = n � 2c into
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(11) and (12) leads to the same list of exponents remaining on the left and right
of (2), namely c, 2c, c+ b, n� c, 2n� 3c, and n� c+ b. In this case, substituting
the information obtained from the equations considered thus far we deduce that
w(x) = 1 + xa + xb + xc + xa+c + xa+2c = f(x). Since w(x) = f(x), no output
is produced here and we continue with the last unresolved case (using one of the
equations n � c � a = c + b and n � c � a = 4n� 7c � 3a if they have not been
resolved yet). If after substituting into the remaining exponents in (2) there are
still exponents remaining, we determine values for the least remaining exponent
on both sides of (2) as before. We equate these and obtain an additional equation
(or a list of equations to consider), plugging in the information obtained from
such an equation back into the list of remaining exponents in (2). This process is
repeated as long as necessary. In every case, it turned out that after the initial
substitution and cancellation of terms that led to (11) and (12) in the example
above, at most three additional substitutions were necessary (in other words, each
system of equations consisted of � 8 equations). A particular case ended whenever
the list of equations we were considering had no solutions or had a solution leading
to the cancellation of all the exponents in (2). In the former situation, we simply
considered the most recent equation we had not yet considered and formed a new
system of equations. In the latter case, to avoid printing out unnecessary output,
we checked whether any of the following occurred: w(x) = f(x), w(x) = ~f (x),
0 was an exponent obtained, the inequalities a � b � c � d � n (using Lemma 4)
do not hold, and the inequalities a � k2 � k3 � k4 � n (using Lemma 4) do not
hold. In any of these cases, no output was printed. Otherwise, the exponents for
f(x) and w(x) were printed.

We now are left with interpreting the output. There were six di�erent values
for the pair (f(x); w(x)) that were given. One was given by

f(x) = 1+xa+x2a+x6a+x8a+x11a and w(x) = 1+xa+x6a+x7a+x9a+x11a:

This corresponds to the case s = a and t = 2a in the statement of Theorem 2.
Another value for f(x) and w(x) corresponded to these same two polynomials
with the role of f(x) and w(x) interchanged. We note that when a = 1 these
two polynomials correspond to two of the four variations of (1) spelled out in the
introduction. The other two variations of (1) did not occur as we imposed the
conditions a � n � d and k1 � n � k4 (we used this to deduce that k1 = a).
Recall that there is no harm in doing this as some variation of a given f(x) with
reducible non-reciprocal part will always arise even with these conditions. A third
output obtained was with f(x) as in the statement of Theorem 2, with s = a

and t = b, and w(x) = 1 + xa + x4a+b + x3a+2b + x5a+2b + x5a+3b. We note that
the factorization given in the statement of the theorem was done without the
aid of computer. The computations however indicate that this f(x) has only two
irreducible non-reciprocal factors since otherwise there would have been more than
one w(x) obtained corresponding to this f(x), and there was not. A forth output
obtained was with f(x) as in the statement of Theorem 2, with s = b and t = a,
and w(x) = 1 + xa + x2a+b + xa+2b + x3a+4b + x3a+5b. Note that these last two
outputs are the reason why we require only s and t in the statement of the theorem
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to be distinct and impose no condition on which of s and t is larger (though this
is clear also from other considerations). The �fth and sixth outputs obtained were

f(x) = 1 + xa + xb + x�3a+2b + x�5a+4b + x�7a+5b and

w(x) = 1 + xa + x�2a+b + x�2a+2b + x�6a+4b + x�7a+5b;

and

f(x) = 1 + xa + xb + x�5a+2b + x�3a+2b + x�7a+3b and

w(x) = 1 + xa + x�4a+b + x�6a+2b + x�4a+2b + x�7a+3b;

respectively. In the �fth case, the substitution a = t and b = s + 2t leads to w(x)
being of the form given for f(x) in the statement of the theorem; this implies that
the f(x) given in the �fth case is a variation of the f(x) stated in the theorem.
The substitution is justi�ed as the exponents are listed in increasing order above
(as obtained in the program) so that 0 < c � b = (�3a + 2b)� b = b� 3a which
implies b � 2a > a; in other words, a = t and b = s + 2t is possible for some
distinct positive integers s and t as in the theorem. Similarly, if we consider the
substitution a = s and b = t + 4s in the sixth example, we deduce that the f(x)
obtained there is a variation of the f(x) stated in the theorem. This completes the
proof of the theorem.

4. Proofs of Theorem 3 and Theorem 4

We establish here the remaining results stated in the introduction.

Proof of Theorem 3. Fix f(x) and ` as in the theorem. Observe that if � and 1=�
are roots of f(x`), then �` and 1=�` are roots of f(x). Since f(x) is irreducible
and non-reciprocal, it is not possible for a number � and its reciprocal 1=� to both
be roots of f(x) (one should consider the possibility that � = 1=� here, but then
f(x) is reciprocal). We deduce that f(x`) has no irreducible reciprocal factors.

Consider f(x) as in (3). Set g(x) = f(x`). Suppose w(x) =
Ps

j=0 bjx
kj 2Z[x]

with 0 = k0 < k1 < : : : < ks = `dr and w(x) ew(x) = g(x)~g(x). We show that w(x)
must be one of �g(x) and �~g(x). Once this has been established, Lemma 1 implies
the theorem holds. Observe that each exponent in g(x)~g(x) is a multiple of `. From
Lemma 3, it follows in particular that w(x) has non-negative coe�cients. This
implies that each power xkj occurring in w(x) appears with a non-zero coe�cient
in the expansion of w(x) ew(x). The equality w(x) ew(x) = g(x)~g(x) now implies
that for each j 2 f0; 1; : : :; rg there is an integer k0j such that kj = `k0j. We deduce

that h(x)~h(x) = f(x) ~f (x) where h(x) =
Ps

j=0 bjx
k0j . Lemma 1 now implies that

h(x) = �f(x) or h(x) = � ~f (x). These in turn imply that w(x) must be one of
�g(x) and �~g(x), and the theorem follows. ut
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Proof of Theorem 4. We show �rst that C = (1 +
p
5)=2 satis�es the conditions

in the theorem. By the theorems of Ljunggren [2] mentioned in the introduction,
the non-reciprocal part of f(x) is irreducible or identically one whenever r � 3.
The theorem of Solan and the author [1] also mentioned there implies the same if
r = 4. Since 2=(�1 +

p
5) = (1 +

p
5)=2, we obtain

dj+1 > dj +

�
1 +

p
5

2
� 1

�
dj(14)

= dj +

��1 +p
5

2

�
dj > dj + dj�1 for each j � 2:

Theorem 2 and (14) imply the non-reciprocal part of f(x) is irreducible if r = 5
since in the case that the non-reciprocal part of f(x) is reducible in Theorem 2 we
have

d5 = 5s + 3t < (4s + 2t) + (2s + 2t) = d4 + d3

with a similar argument holding for each of the three other variations f(x) can
have in Theorem 2.

We consider now the case that r � 6. As before we consider w(x) with (2), (3),
and (4) holding and apply Lemma 3 so that we may take s = r and each bj = 1.
By considering ew(x) instead of w(x), we may suppose that k1 � n� kr�1 and do
so. From (14), we deduce that

n� dj + di = dr � dj + di > dr�2 if j 6= r:

It follows that the r � 1 least exponents on the left of (2) are 0; d1; d2; : : : ; dr�2.
The condition k1 � n�kr�1 implies that the least non-zero exponent on the right
of (2) is k1. Therefore, k1 = d1. De�ne ` to be the greatest positive integer � r for
which k` = d`.

Assume ` � r � 3. Let m denote the least non-zero exponent of ew(x). Observe
that m occurs as an exponent on the right of (2) and must be di�erent from
d0; d1; : : : ; d`. Since the smallest exponent on the left of (2) which is greater than
d` is d`+1, we obtain that m � d`+1. On the other hand, m > d`+1 is impossible
since otherwise the exponent d`+1 cannot occur on the right of (2). It follows that
m = d`+1. Observe now that (14) implies

d`+1 < m+ d1 < d`+2:

Since m+ d1 is an exponent appearing on the right of (2) and since the r� 1 least
exponents on the left of (2) are 0; d1; d2; : : : ; dr�2, we deduce that ` � r�3. Hence,
` = r � 3.

We now show that ` = r � 3 is impossible. We consider the exponents on the
left and right of (2) which are in the interval (dr�2; dr�2 + dr�3]. Observe that

n� dj + di = dr � dj + di > dr�1 > dr�2 + dr�3 if j � r � 2:

If j = r and 0 � i � r, then n�dj+di = di 62 (dr�2; dr�2+dr�3]. Also, if j = r�1
and i � r� 3, then n� dj + di � dr � dr�1+ dr�3 > dr�2+ dr�3. Hence, the only
possible exponents on the left of (2) which can be in (dr�2; dr�2 + dr�3] are the



20 Michael Filaseta

r� 3 numbers n� dr�1+ di with 0 � i � r� 4. The least exponents for w(x) and
ew(x) are given by

w(x) = 1 + xd1 + : : :+ xdr�3 + : : : and ew(x) = 1 + xdr�2 + : : : ;

where the exponents beyond the last exponent in each of these two expressions are
unknowns (but greater than the exponents shown). It follows that the exponents
on the right of (2) in the interval (dr�2; dr�2 + dr�3] include the r � 3 numbers
dr�2 + dj for 1 � j � r � 3. As the right side of (2) contains at least these
r � 3 numbers in (dr�2; dr�2 + dr�3] and the left side of (2) contains at most the
r � 3 numbers indicated earlier, we deduce that each side contains exactly the
r � 3 exponents indicated in (dr�2; dr�2 + dr�3]. By ordering these lists of r � 3
exponents on the left and right of (2) from least to greatest, we obtain

dr�dr�1 = dr�2+d1; dr�dr�1+d1 = dr�2+d2; dr�dr�1+d2 = dr�2+d3; : : : :

Since r � 6, we deduce that r � 3 � 3 so that there are � 3 equations above as
shown. By considering the �rst and third equations, we obtain d3 = d2 + d1, a
contradiction to (14).

We now know that ` � r � 2. Still denoting by m the least non-zero exponent
of ew(x), we now have

w(x) = 1 + xd1 + : : :+ xdr�2 + : : : and ew(x) = 1 + xm + : : : :

The smallest exponent > dr�2 on the left of (2) is either dr�1 or n � dr�1. Note
that m > dr�2. The missing terms for w(x) above are xn�m and xn. It follows
that the smallest exponent > dr�2 on the right of (2) is either m or n�m. Hence,
one of dr�1 and n � dr�1 must equal one of m and n �m. Therefore, m = dr�1
or m = n� dr�1. If m = n� dr�1, then n�m = dr�1 so that w(x) = f(x). Now,

suppose m = dr�1. Since w(x) = eew(x), we deduce that

w(x) = 1 + xd1 + : : :+ xdr�2 + xn�dr�1 + xn

and

ew(x) = 1 + xdr�1 + xn�dr�2 + : : :+ xn�d1 + xn:

Expanding both sides of (2), deleting like exponents, and comparing exponents
< n, we are left with the exponents n � dr�1 + dj for 1 � j � r � 2 on the
left and the exponents dr�1 + dj for 1 � j � r � 2 on the right. Comparing the
least of these, we deduce n� dr�1 + d1 = dr�1 + d1. Hence, n = 2dr�1. It follows
that n � dr�1 = dr�1. Therefore, w(x) = f(x) in this case as well. By applying
Lemma 1, we now deduce that the non-reciprocal part of f(x) is irreducible or
identically one.

To complete the proof of the theorem, it remains to show that ifC < (1+
p
3)=2,

then there is an f(x) as in the theorem satisfying the condition dj+1 > Cdj for
1 � j � r�1 but with reducible non-reciprocal part. To construct such an f(x), we
use Theorem 2. Speci�cally, we take s to be a su�ciently large integer (depending
on C) and t to be the integer satisfying s

p
3 < t < (s

p
3) + 1. One checks directly

that f(x) has the desired property, completing the proof of the theorem. ut
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