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1. Introduction

Let drdr�1 : : : d1d0 be the base b representation of a positive integer m. We refer to a

block (of digits) of m base b as being a successive sequence of equal digits didi�1 : : : dj of

maximal length. For example, the base 10 number 8037776589 consists of 8 blocks: 8, 0,

3, 777, 6, 5, 8, and 9. We may view the number of blocks of m base b as one more than

the number of k 2 f0; 1; : : : ; r � 1g for which dk 6= dk+1, and we denote the number of

blocks by B(m; b). Thus, in the example above, B(8037776589; 10) = 8. If the base b is

understood, we may omit any reference to it.

It is reasonable to suspect, from a probabilistic point of view, that whenever a is a

positive integer and a is not a power of 10, then the number of blocks of an tends to

in�nity as n goes to in�nity. For an arbitrary base b > 1, it is not di�cult to show that

B(an; b) is bounded whenever log a= log b is rational, and for other values of a, we would

like to conclude that B(an; b) tends to in�nity with n. We show in fact that this is a

consequence of a certain transcendence result.

Theorem 1. Let a and b be integers � 2. If log a= log b is irrational, then

(1) lim
n!1

B(an; b) =1:
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Theorem 1 can be improved whenever b is not a prime power and a is a prime divisor

of the base b.

Theorem 2. Let b be a positive integer which is not a prime power and let p be a prime.

Then p divides b if and only if

(2) lim
n!1

min
k2Z+

b - pnk

B(pnk; b) =1:

We will give an elementary proof of Theorem 2, so it is worth noting that Theorem 2

implies that (1) holds with b = 10 for a = 2; 4; 5; 6; 8; 12; : : : and, in general, whenever the

exponent of 2 in the largest power of 2 dividing a di�ers from the exponent of 5 in the

largest power of 5 dividing a.

We make one further observation. Theorem 2 implies that there is a positive inte-

ger n such that every multiple of 2n which is relatively prime to 5 contains two blocks

formed from the same digit. We were able to establish computationally that n = 53 is

the smallest such n. Similarly, any odd multiple of 513 contains two blocks formed from

the same digit, and the exponent 13 is best possible in this case. In particular, if B is

the set of all numbers not ending in the digit 0 base 10 and consisting of blocks formed

from distinct digits, then there are exactly two numbers in B divisible by 252. They are

3 � � �|{z}
9

37 � � �|{z}
16

70049999996 � � �|{z}
11

688512 and 76 � � �|{z}
9

62 � � �|{z}
16

29950000003 � � �|{z}
11

311488. On the

other hand, there are in�nitely many numbers in B divisible by 512 and these are given by

the elements of B ending in 336669921875 or 663330078125.

2. The Proof of Theorem 1

We �rst show that Theorem 1 follows from

Lemma 1. Let a and b be integers> 1 such that log a= log b is irrational. Let a1; a2; : : : ; am

be arbitrary integers. Then there are �nitely many (m + 1)�tuples (k1; k2; : : : ; km; n) of

non-negative integers satisfying
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(i) k1 < k2 < � � � < km,

(ii)
Pm

j=r ajb
kj > 0 for 1 � r � m, and

(iii)
Pm

j=1 ajb
kj = (b� 1)an.

To prove Theorem 1, it su�ces to show that for any positive integer M , there are

only �nitely many n for which B(an; b) � M: Given M 2 Z+, consider any n such that

B(an; b) �M: Let m = B(an; b)+�; where � = 0 if b j an and � = 1 otherwise. De�ne d1 as

the �rst right-most nonzero digit of an base b and take k1 to be the number of right-most

consecutive zero digits of an. Let d2 be the next right-most digit of an satisfying d2 6= d1

and continue in this manner, de�ning dj+1 as the next digit of a
n such that dj+1 6= dj , until

dm�1 has been de�ned. There exist positive integers l2; : : : ; lm with l2 < l3 < � � � < lm

such that

an = bk1
h
(d1 � d2)

bl2 � 1

b� 1
+ � � � + (dm�2 � dm�1)

blm�1 � 1

b� 1
+ dm�1

blm � 1

b� 1

i
:

Condition (iii) of Lemma 1 holds with a1 = �d1; aj = dj�1 � dj for j 2 f2; : : : ;m � 1g;

am = dm�1, and kj = k1 + lj for j 2 f2; : : : ;mg. Note that regardless of the value of n,

we have that aj 6= 0 and jaj j � b � 1 for every j 2 f1; : : : ;mg. Thus, each n produces a

solution to at most one of (2b � 2)m � (2b � 2)M+1 equations of the form given in (iii).

Moreover, with the kj and aj de�ned as above, (i) is clearly satis�ed and (ii) holds since

am = dm�1 � 1 and

mX
j=r

ajb
kj � bkm �

m�1X
j=r

jaj jb
kj � bkm �

m�1X
j=r

(b� 1)bkj > 0:

We deduce from Lemma 1 that there are only �nitely many n for which B(an; b) � M .

Theorem 1 follows.

Instead of applying Lemma 1 above, we could have appealed to the following re-

sult of Revuz [2]: If �1; : : : ; �M ; �1; : : : ; �N are algebraic numbers, then the equation

PM
i=1 �i�

mi =
PN

j=1 �j�
nj 6= 0 holds for only a �nite number of rational integer (m+n)-
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tuples (mi; nj), provided log �= log � is irrational. It appears, however, that counterex-

amples exist to this statement, although perhaps the conditions of the theorem can be

modi�ed to make a correct veri�able result. For example, if � is the positive real root of

x2 � x� 1, one can conclude from this statement that

�k5 � �k4 � �k3 + �k2 � �k1 = 2m

has �nitely many solutions in integers m; k1; : : : ; k5; however, the equation is satis�ed

whenever (m; k1; : : : ; k5) = (0; 1; 2; k; k + 1; k + 2) where k is an arbitrary integer. Note

that we could replace 2m on the right-hand side of this example with im and then take

m = 4n, thereby introducing a second integer parameter.

We say that an algebraic number � has degree d and height A if � satis�es an irre-

ducible polynomial f(x) =
Pd

j=0 ajx
j 2 Z[x] with ad 6= 0, gcd(ad; : : : ; a1; a0) = 1, and

max0�j�d jaj j = A. To prove Lemma 1, we make use of the following result which can be

found in [1]. (See Theorem 3.1 and the comments following it. Note that a stronger result

could have been stated.)

Lemma 2. Let �1; : : : ; �r be non-zero algebraic numbers with degrees at most d and

heights at most A. Let �0; �1; : : : ; �r be algebraic numbers with degrees at most d and

heights at most B > 1. Suppose that

� = �0 + �1 log �1 + � � � + �r log �r 6= 0:

Then there are numbers C = C(r; d) > 0 and w = w(r) � 1 such that

j�j > B�C(logA)
w

:

Proof of Lemma 1. Throughout the proof, we will make use of the notation f � g which

will mean that jf j � cg for some constant c = c(m; a; b; a1; : : : ; am) and for all k1; : : : ; km,

and n being considered. We also will add to the conditions (i), (ii), and (iii) of the lemma,

a fourth condition:
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(iv)
Pr

j=1 ajb
kj 6= 0 for 1 � r � m.

We justify being able to do so by showing that if Lemma 1 is true with the additonal

condition (iv), then it is true without it. Suppose that Lemma 1 with (iv) holds. If

(k1; k2; : : : ; km; n) satis�es conditions (i), (ii), and (iii) of Lemma 1, but not (iv), then

let r 2 f1; 2; : : : ;mg be as large as possible such that
Pr

j=1 ajb
kj = 0. Note by (ii) that

r < m. Observe now that (kr+1; k2; : : : ; km; n) satis�es kr+1 < � � � < km,
Pm

j=t ajb
kj > 0

for r + 1 � t � m,
Pm

j=r+1 ajb
kj = (b� 1)an, and

Pt
j=r+1 ajb

kj 6= 0 for r + 1 � t � m.

One can then appeal to Lemma 1 with (iv) to conclude that there are only �nitely many

such (kr+1; k2; : : : ; km; n). But for each such solution (kr+1; : : : ; km; n), there is only a

�nite number of choices for (k1; : : : ; kr) satisfying 0 � k1 < � � � < kr < kr+1. Since there

are at most m� 1 possible values of r, we see that if Lemma 1 holds under condition (iv),

then it must hold in general.

Assume that (k1; k2; : : : ; km; n) satis�es conditions (i) - (iv). Ifm = 1, then (iii) becomes

a1b
k1 = (b� 1)an:

Observe that if k1 and n satisfy the above equation and k01 and n0 are integers for which

a1b
k01 = (b � 1)an

0

, then bk1�k
0

1 = an�n
0

. Since log a= log b is irrational, we could then

deduce that n0 = n and k01 = k1. In other words, the above equation has at most one

solution in integers k1 and n. Lemma 1 follows immediately, in this case.

Suppose now that m > 1. We make some preliminary estimates. Since an � Mbkm ;

where

M =

mX
j=1

jaj j � 1;

we have that

n� km:

We improve this estimate to

n� km � k1:
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This is just the previous bound on n if k1 = 0. Suppose now that k1 > 0. Then conditions

(i) and (iii) of the lemma imply that every prime divisor of b divides a. Let p1; : : : ; pt be

the distinct prime divisors of a. Write

a =

tY
j=1

p
ej
j and b =

tY
j=1

p
fj
j ;

where ej � 1 and fj � 0 for each j 2 f1; : : : ; tg. We show that for some u and v in

f1; : : : ; tg,

(3) eufv < evfu:

If some fv = 0, then (3) holds upon taking pu to be any prime divisor of b. On the other

hand, if each fj > 0, then the values of ej=fj for j 2 f1; : : : ; tg cannot all be the same,

since otherwise log a= log b would equal this common value and, hence, would be rational.

Thus, there are u and v in f1; : : : ; tg for which eu=fu < ev=fv, so (3) holds in this case.

Fix u and v as in (3) and consider equation (iii). Note that fu > 0. The largest power

of pu dividing the right-hand side of (iii) is peunu . Since pfuu divides b and bk1 divides the

left-hand side of (iii), we obtain k1fu � eun. Now divide both sides of (iii) by bk1 . Then

the left-hand side becomes

mX
j=1

ajb
kj�k1 �Mbkm�k1 � bkm�k1 ;

while the right-hand side (b� 1)an=bk1 will be a positive integer divisible by pwv , where

w = evn� k1fv � (evfu � eufv)n=fu �
n

fu
:

It follows that

p(n=fu)�1v � bkm�k1 :

Since pv and fu depend only on a and b, we deduce the inequality n� km�k1, as desired.
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We will also want

(4) km � n+ 1;

so we show next that this is a consequence of (i), (ii), and (iii). For r 2 f2; 3; : : : ;mg, we

obtain

(b� 1)an =

mX
j=1

ajb
kj =

� mX
j=r

ajb
kj�kr

�
bkr +

r�1X
j=1

ajb
kj

� bkr �
�r�1X
j=1

jaj j
�
bkr�1 � bkr�kr�1 �

r�1X
j=1

jaj j;

provided that this last expression is positive. Since bkr�kr�1 � 1 if this last expression is

nonpositive, it follows that in either case

kr � kr�1 � n+ 1 for r 2 f2; 3; : : : ;mg:

Therefore,

km � k1 = (km � km�1) + (km�1 � km�2) + � � � + (k2 � k1)� n+ 1:

From (iii), we obtain that bk1 jan so that k1 � n+ 1. Hence, (4) follows.

The basic idea now is to use Lemma 2 to strengthen these estimates. More precisely,

we consider n > 2 and show that

(5) km�i+1 � km�i � (log n)w
i�1i for 1 � i � m� 1;

where w = w(4) is as in Lemma 2. This will imply that

(6) n� km � k1 = (km � km�1) + (km�1 � km�2) + � � � + (k2 � k1)� (logn)w
m�1m:

Since m and w are �xed, we can conclude that n is bounded. By (4) and (i), we have that

all the ki are bounded, thereby completing the proof.
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It remains to establish (5), which we now prove by induction on i. Assume n > 2 and

consider �rst the case when i = 1. Using (ii) with r = m, we see that am > 0. We get

from (iii) that

(7) amb
km (1 +D) = (b� 1)an;

where from (i)

jDj =
���
m�1X
j=1

aj

am
bkj�km

��� �M bkm�1�km :

If km� km�1 � log (2M)= log b, then since n � 3, we have immediately that km� km�1 �

log n, which is (5) for the case i = 1. So suppose km � km�1 > log (2M)= log b. It follows

that jDj < 1=2 and hence

j log(1 +D)j �

1X
j=1

(jDjj=j) � jDj+
jDj2

2(1� jDj)
< (1 + jDj)jDj <

3

2
jDj � bkm�1�km :

Taking the logarithm of both sides of (7) gives

(8) log am + km log b� log(b� 1)� n log a� bkm�1�km :

We use Lemma 2 with d = 1, r = 4, A = maxfb; a; amg � 1, and B = maxfkm; ng � n,

where the last inequality follows from (4). Observe that the left-hand side of (8) is zero

if and only if D = 0. But D = 0 implies that
Pm�1

j=1 ajb
kj = 0, contradicting (iv) since

m � 2. So D 6= 0 and, therefore, the left-hand side of (8) is non-zero. It follows from

Lemma 2 that

bkm�1�km � B�C(logA)
w

;

where C = C(4; 1) and w = w(4). Thus,

km � km�1 � C(logA)w logB � log n;

proving that (5) holds for i = 1. Now �x i in the range 2 � i � m � 1 and suppose that

(5) holds for each positive integer j < i. Then from (iii), we obtain that

D1b
km�i+1 (1 +D2) = (b� 1)an;
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where from (ii) with r = m� i+ 1,

0 < D1 = amb
km�km�i+1 + am�1b

km�1�km�i+1 + � � � + am�i+1 � bkm�km�i+1

and

jD2j =
���
m�iX
j=1

aj

D1

bkj�km�i+1

��� �Mbkm�i�km�i+1 � bkm�i�km�i+1:

The induction hypothesis implies that

km � km�i+1 = (km � km�1) + � � � + (km�i+2 � km�i+1)� (log n)
wi�2(i�1)

so that

(9) logD1 � (log n)
wi�2(i�1)

:

If km�i+1 � km�i � log (2M)= log b, then km�i+1 � km�i � (log n)w
i�1i, as desired. So

suppose km�i+1�km�i > log (2M)= log b. As in the above case for i = 1 we have jD2j <
1
2

and hence j log(1 +D2)j <
3

2
jD2j. Thus,

(10) logD1 + km�i+1 log b� log(b� 1)� n log a� bkm�i�km�i+1:

We use Lemma 2 with d = 1, r = 4, A = maxfb; a;D1g, and B = maxfkm�i+1; ng � n.

Observe that the left-hand side of (10) is zero if and only if D2 = 0. But D2 = 0 implies

Pm�i
j=1 ajb

kj = 0, which contradicts (iv) since m � m � i � 1. Hence the left-hand side of

(10) is non-zero. Therefore, from Lemma 2,

bkm�i�km�i+1 � B�C(logA)
w

where C = C(4; 1) and w = w(4). Note that (9) implies that

logA� (log n)
wi�2(i�1)

:

Thus, we easily deduce that

km�i+1 � km�i � C(logA)w logB � (logn)
wi�1i

;

which completes the induction and the proof. �
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3. The Proof of Theorem 2

Fix b not a prime power, and let p be a prime. If p does not divide b, then for each

positive integer m, pn divides bm�(pn)
� 1, a number having exactly one block, and so (2)

does not hold. Conversely, suppose p divides b. To prove (2), it su�ces to show that for

each positive integer k; there is a positive integer n such that every multiple of pn not

ending in the digit 0 base b has > k blocks base b: Assume to the contrary that there

exists a positive integer k such that for each positive integer n there is a multiple mn of pn

which does not end in 0 and which has � k blocks. Since fmng
1
n=1 is an in�nite sequence,

some in�nite subsequence S1 satis�es the condition that every m 2 S1 ends in the same

non-zero digit d1 base b: There must now exist an in�nite subsequence S2 of S1 such that

every m 2 S2 ends in the same two digits d2d1 base b: Continue in this manner so that

for j � 2; Sj is a subsequence of Sj�1 such that every m 2 Sj ends in the same j digits

djdj�1 : : : d1 base b: We now have an in�nite sequence fdjg
1
j=1; where d1 6= 0; such that

for each positive integer n; there is a multiple m of pn such that the last n digits of m

are dndn�1 : : : d1 and B(m; b) � k. Since each such m has � k blocks, there are at most

k � 1 integers j � 2 such that dj 6= dj�1: Hence, there exists an integer J � 2 and a

d 2 f0; 1; 2; : : : ; b� 1g such that dj = d for every j � J: Write

(dJ�1dJ�2 : : : d1)b = pn1u and bJ�1d = pn2v;

where the integers u and v are relatively prime to p. We consider two cases, arriving at a

contradiction in each case.

Case 1. n1 6= n2:

Since the b�ary number 111 : : : 11b is congruent to 1 (mod b); we get that 111 : : : 11b � 1

(mod p): Thus, (dd : : : ddJ�1 : : : d1)b = bJ�1d(11 : : : 1)b + (dJ�1 : : : d1)b is a sum of two

numbers, the �rst exactly divisible by pn2 and the second exactly divisible by pn1 : Let

10



t = minfn1; n2g: Since n1 6= n2; we have that

(11) pt jj (dd : : : ddJ�1 : : : d1)b;

for any positive number of d's. By the de�nition of SJ+t; there is an m 2 SJ+t such that

pt+1 divides m: Also, we may write m in the form bJ+tm0 + (dd : : : ddJ�1 : : : d1)b; where

m0 is a positive integer and t+1 d's occur to the left of dJ�1: The fact that p
t+1 divides

both m and bJ+tm0 implies pt+1 divides (dd : : : ddJ�1 : : : d1)b, contradicting (11).

Case 2. n1 = n2:

Let w = v � u(b� 1): First, we show that w 6= 0: For suppose w = 0. Since d1 6= 0, we

deduce that bJ�1d = pn2v = pn1v = pn1u(b� 1) = (dJ�1 : : : d1)b(b� 1) is not divisible by

b. This contradicts the fact that b divides bJ�1d, since J was chosen � 2. Thus w 6= 0:

Let t be the nonnegative integer for which pt exactly divides w: Pick m 2 SJ+t+n1+1 such

that pJ+t+n1+1 divides m and write m in the form bJ+t+n1+1m0 + (dd : : : ddJ�1 : : : d1)b;

where m0 is an integer and t+n1+2 digits d occur to the left of dJ�1. We obtain

pJ+t+n1+1
j (dd : : : ddJ�1 : : : d1)b = bJ�1d

�
bt+n1+2 � 1

b� 1

�
+ (dJ�1 : : : d1)b:

Hence,

pn1v
�
bt+n1+2

� 1
�
� �pn1u(b� 1) (mod pJ+t+n1+1):

Since pt+1 divides bt+n1+2; we get that v � u(b� 1) (mod pt+1): This contradicts the fact

that pt exactly divides w = v � u(b� 1). �

In conclusion, the authors thank (blame) J. L. Selfridge for mentioning related questions

which led to this work. The authors are also grateful to Titu Andrescue and Andrzej

Schinzel for simplifying separate parts of the proof of Lemma 1.
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