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1 Introduction

The idea of looking at the prime factorization of the coefficients of a polynomial in Z[x] in
order to establish its irreducibility (over Q) goes back to the classical Schönemann-Eisenstein
criterion first derived in [29] and [6] in the middle of the 19th century. At the beginning
of the 20th century, G. Dumas [5], again making use of primes that divide the coefficients
of a polynomial, introduced the idea of using Newton polygons which allowed for variations
and strengthening of the Schönemann-Eisenstein criterion. In a series of papers, I. Schur
[30, 31, 32, 33] obtained irreducibility results for polynomials f(x) associated with generalized
Laguerre polynomials

L(α)
m (x) =

m∑
j=0

(m+ α)(m− 1 + α) · · · (j + 1 + α)

(m− j)!j!
(−x)j,

where m is a positive integer and α is an arbitrary real number. In particular, Schur estab-
lished the explicit result that for α = 0 or 1, the polynomial L

(α)
m (x) is irreducible for all

positive integers m. Working in the ring of algebraic integers in Q(γ) where γ is a root of
f(x), Schur obtained his results by looking at the prime ideal factorizations of the principal
ideals generated by each coefficient of f(x). Later, work of Coleman [4] and the first author
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[9] showed that Schur’s results could be established directly from the use of the main Newton
polygon result of Dumas.

In the next section, we will give an expository account of how Newton polygons have
been used to establish irreducibility results for the generalized Laguerre polynomials and
discuss various results that have been obtained. We will see that this approach makes heavy
use of knowledge about the largest prime factor of the product

∆(m, k) = m(m+ 1) · · · (m+ k − 1),

where m and k denote positive integers. Observe that ∆(m, k) is simply the product of the k
consecutive integers beginning withm. For a positive integer n, we let P (n) denote the largest
prime divisor of n. Thus, we will make a connection between the irreducibility of Laguerre
polynomials and the value of P

(
∆(m, k)

)
. T. N. Shorey’s contribution to this latter subject

is extensive. Some of the first author’s early work on irreducibility was in fact motivated by
Shorey’s paper [35]. We note also that Shorey’s joint work with R. Tijdeman [36, 37, 38, 39]
constitutes important research in this direction that still has not been completely utilized
for irreducibility results obtainable by these methods.

As we will see, obtaining explicit results for the irreducibility of generalized Laguerre
polynomials using the methods described here depend on having explicit estimates also for
P

(
∆(m, k)

)
. In the third section of this paper, we illustrate this by an application of the

following recent result due to S. Laishram and T. N. Shorey [22].

Theorem 1.1 For m and k positive integers,

P (∆(m, k)) > 1.8k for m > k > 2

unless (m, k) ∈ B, where

B ={(8, 3), (5, 4), (6, 4), (7, 4), (14, 13), (15, 13), (16, 13)}
∪

{
(j + 1, j) : j ∈ {3, 5, 8, 11, 14, 18, 63}

}
.

In particular, we use Theorem 1.1 to show for the first time the following explicit result that
generalizes the irreducibility theorems of Schur’s mentioned above.

Theorem 1.2 Let m and α be integers with m ≥ 1 and 0 ≤ α ≤ 10. Then L
(α)
m (x) is

irreducible unless (m,α) is one of the pairs (2, 2), (4, 5), and (2, 7).

For each of the three pairs in the theorem, x − 6 is a factor of the polynomial L
(α)
m (x).

This does not continue to hold for larger values of α with L
(α)
m (x) reducible. In particular,

it is easy to check that L
(α)
2 (x) with α ∈ Q is reducible if and only if α+ 2 is a square in Q.

Indeed, the roots of L
(α)
2 (x) are precisely α+ 2 ±

√
α+ 2.

The choice to restrict to α ∈ {0, 1, . . . , 10} in Theorem 1.2 is somewhat arbitrary. The
goal here is mainly to illustrate how Theorem 1.1 and similar results can be used to obtain
effective theorems on the irreducibility of classes of generalized Laguerre polynomials. It
would not be difficult to extend these computations further to other values of α and even to
consider rational values of α with these same methods.
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Our application of Theorem 1.1 to obtain Theorem 1.2 will allow us to go further. For
m a positive integer, set

bj =

(
m

j

)
(m+ α)(m− 1 + α) · · · (j + 1 + α) for 0 ≤ j ≤ m,

and let

f(x) =
m∑

j=0

ajbjx
j,

where the aj’s are arbitrary integers with |a0| = |am| = 1. We consider as usual an empty
product to be 1 so that the above definition implies bm = 1. Observe that if aj = (−1)j,

then f(x) = m!L
(α)
m (x) and, hence, the irreducibility of f(x) for arbitrary aj as above implies

the irreducibility of L
(α)
m (x). Our approach will be able to address the irreducibility of these

more general polynomials f(x).

Theorem 1.3 Let m and α be integers with m ≥ 1 and 0 ≤ α ≤ 10. Let f(x) be as
above with arbitrary integers aj satisfying |a0| = |am| = 1. If f(x) is reducible for some
such choice of aj, then (m,α) must be as listed in Table 1 below and f(x) is the product

m α Linear Factors

2 2 x± 2, x± 6

2 7 x± 6, x± 12

4 4 x± 2, x± 10

4 5 x± 6

8 8 x± 2, x± 6, x± 18

24 8 x± 6

Table 1

of a linear polynomial from the corresponding last column of the table and an irreducible
polynomial of degree m− 1. Furthermore, for each possibility for m and α as listed in Table
1 and each prescribed linear factor given in the corresponding last column of this table, there
exist integers aj with |a0| = |am| = 1 such that f(x) is reducible and has the prescribed factor.

To illustrate this result, consider m = 8 and α = 8. The choice

a8 = 1, a7 = −24634, a1 = 1, a0 = −1,

and aj = 0 for 2 ≤ j ≤ 6 shows that f(x) can have the linear factor x− 2. The choice

a8 = 1, a7 = −23852, a1 = 309, a0 = −1,

and aj = 0 otherwise shows that f(x) can have the linear factor x− 6. The choice

a8 = 1, a7 = −21506, a1 = 202981, a0 = −1,

and aj = 0 otherwise shows that f(x) can have the linear factor x− 18. One can replace x
with −x in these examples to obtain the linear factors x+ 2, x+ 6 and x+ 18, respectively.
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The last column in our table will rely on constructing specific examples of this nature. Most
of the argument for establishing Theorem 1.3 will be given in the third section as part of our
argument for Theorem 1.2. We address the final details of the proof of Theorem 1.3 in the
fourth and final section of the paper.

Note that Theorem 1.3 can be used to elaborate on the choices of aj which lead to
reducible f(x). For example, in the case that α = 2, arbitrary positive integers m and
variable aj as in the theorem, it is a simple matter to deduce that f(x) is in fact irreducible

unless f(x) = ±L(2)
2 (±x).

Our approach will suggest a further investigation that can be made. Most of the argu-
ments will not make use of the factor

(
m
j

)
in the definition of bj. By removing this factor in

bj and rewriting f(x), we can obtain information about the factorization of

am
xm

(m+ α)!
+ am−1

xm−1

(m− 1 + α)!
+ · · · + a1

x

(1 + α)!
+ a0

1

α!
,

where α ∈ {0, 1, . . . , 10} and the aj’s are arbitrary integers with |a0| = |am| = 1. This in fact
is emphasized by our demonstration of Theorem 2.2 in the next section. These polynomials
are more general than the ones considered in Theorem 1.3, so a result similar to Theorem
1.3 for these polynomials would be of interest. On the other hand, linear factors (and not
prescribed higher degree factors) can occur with m arbitrarily large; indeed, this has already
been demonstrated for α = 1 (see [31] and [1]).

2 The General Setting

If p is a prime and n is a nonzero integer, we define ν(n) = νp(n) to be the nonnegative integer
such that pν(n) | n and pν(n)+1 - n. We define ν(0) = +∞. Consider w(x) =

∑m
j=0 ajx

j ∈ Z[x]
with ama0 6= 0 and let p be a prime. Let S be the following set of points in the extended
plane:

S = {(0, ν(am)), (1, ν(am−1)), (2, ν(am−2)), . . . , (m− 1, ν(a1)), (m, ν(a0))}.

Consider the lower edges along the convex hull of these points. The left-most endpoint is
(0, ν(am)) and the right-most endpoint is (m, ν(a0)). The endpoints of each edge belong to
S, and the slopes of the edges increase from left to right. When referring to the “edges”
of a Newton polygon, we shall not allow two different edges to have the same slope. The
polygonal path formed by these edges is called the Newton polygon of w(x) with respect to
the prime p.

The following result of G. Dumas [5] goes back to 1906.

Lemma 2.1 Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and let p be a prime. Let t be
a non-negative integer such that pt divides the leading coefficient of g(x)h(x) but pt+1 does
not. Then the edges of the Newton polygon for g(x)h(x) with respect to p can be formed
by constructing a polygonal path beginning at (0, t) and using translates of the edges in the
Newton polygon for g(x) and h(x) with respect to the prime p (using exactly one translate
for each edge). Necessarily, the translated edges are translated in such a way as to form a
polygonal path with the slopes of the edges increasing.
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Observe that if w(x) =
∑m

j=0 ajx
j ∈ Z[x] and p is a prime satisfying the three conditions

p | aj for 0 ≤ j ≤ m − 1, p2 - a0 and p - am, then the Newton polygon of w(x) with

Newton polygon of w(x) with m = 12

respect to p consists of one edge with endpoints (0, 0) and (m, 1). Lemma 2.1 immediately
implies that w(x) is irreducible. Hence, Lemma 2.1 can be viewed as a generalization of the
Schönemann-Eisenstein criterion. To see that Lemma 2.1 quite easily implies a result more
general than the Schönemann-Eisenstein criterion, we leave the following as an exercise.

Example Let w(x) =
∑m

j=0 ajx
j ∈ Z[x], and let p be a prime.

(a) Let k be an integer relatively prime to m. If p - am, pk|aj for j ∈ {0, 1, . . . ,m − 1},
and pk+1 - a0, then w(x) is irreducible.

(b) Let k be such that pk‖a0. Suppose that p - am and that for each j ∈ {1, 2, . . . ,m− 1}
we have pe(j)|aj for some positive integer e(j) satisfying me(j) + kj ≥ km. Then w(x)
factors in Q[x] as a product of irreducible polynomials each with degree a multiple of
m/ gcd(m, k).

Our main interest in this paper is to elaborate on the use of Theorem 1.1 and Lemma
2.1 for determining irreducibility results for the classical Laguerre polynomials defined in
the introduction. There were also early applications of Lemma 2.1 to classical polynomials
that were directed at the still open problem of establishing the irreducibility of the Legendre
polynomials. Such work was done by J. H. Wahab [43, 44] and then R. F. McCoart [25].

We summarize in Table 2 below the known results concerning the irreducibility of all
but finitely many or all Laguerre polynomials for various α. We note, though, in some
cases, prior work was done establishing the irreducibility for a smaller class of polynomials.
In particular, the case α = −2m − 1 corresponds to the classical Bessel polynomials and
several early irreducibility results for these polynomials can be found in E. Grosswald’s work
(cf. [17]). Though Dumas’s work existed at the time, I. Schur [30, 33] did not make use of
Lemma 2.1. His results, as well as many of the subsequent results in the table, involve more
general polynomials. The result of R. F. Coleman [4] is indicated in the table in part as it
is the first occurrence of a result for all m that involves the use of Lemma 2.1. Later, the
first author [9] generalized the use of Lemma 2.1, showing for the first time that the full
strength of I. Schur’s results related to α = −m − 1 can be obtained using Lemma 2.1; in
fact a more general irreducibility result is given in [9]. The results in the table establishing
irreducibility for all but finitely many m are effective; that is, in theory for a fixed α as in
the first column, the specific m for which L

(α)
m (x) are reducible can be computed. Such a

computation is typically not practical. No date is indicated in the latter results since, as of
this writing, they have not appeared in print. Finally, we note that the main new result in
this paper, that is the case where α ∈ {2, 3, . . . , 10}, is not tabulated in Table 2.
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α reducible L
(α)
m (x) Discoverer Year

0 none I. Schur [30] 1929

−m − 1 none I. Schur [30] 1929

1 none I. Schur [33] 1931

−m − 1 none R. F. Coleman [4] (new proof) 1987

−2m − 1 finitely many M. Filaseta [10] 1995

−m − 2 none F. Hajir [18] 1995

−2m − 1 none M. Filaseta and O. Trifonov [12] 2002

fixed α ∈ Q\Z− finitely many M. Filaseta and T. Y. Lam [11] 2002

−m − 3 none E. A. Sell [34] 2004

−m − r, r = 4, 5, . . . , 9 none F. Hajir [20] —

−m − r, fixed r finitely many F. Hajir [20] —

m m = 2 only M. Filaseta, T. Kidd, O. Trifonov —

Table 2

To illustrate the approach and establish some preliminary results, we give here a proof
of the following result of I. Schur [30].

Theorem 2.2 Let m be a positive integer, and let a0, a1, . . . , am denote arbitrary integers
with |a0| = |am| = 1. Then

am
xm

m!
+ am−1

xm−1

(m− 1)!
+ · · · + a1x+ a0

is irreducible over the rationals.

The above result is the main result of I. Schur in [30]. If one takes aj = (−1)j
(

m
j

)
in

Theorem 2.2, then we deduce that L
(0)
m (x), the classical Laguerre polynomials, are irreducible,

which corresponds to the first entry in Table 2. If one takes aj = 1 for each j in Theorem
2.2, then one gets a truncated Maclaurin series for ex. This corresponds to the value of
(−1)mL

(−m−1)
m (x) and, hence, the second entry in Table 2. The argument for Theorem 2.2

that we are about to give is based on a proof by the first author in [10]. It makes use of the
following consequence of Lemma 2.1.

Lemma 2.3 Let k be a positive integer. Suppose v(x) =
∑m

j=0 cjx
j ∈ Z[x] and p is a prime

such that p - cm, p|cj for all j ∈ {0, 1, . . . ,m − k}, and the right-most edge of the Newton
polygon for v(x) with respect to p has slope < 1/k. Then for any integers a0, a1, . . . , am with
|a0| = |am| = 1, the polynomial u(x) =

∑m
j=0 ajcjx

j cannot have a factor in Z[x] of degree k.

Proof We first consider the case that aj = 1 for all j ∈ {0, 1, . . . ,m} so that u(x) = v(x).
Assume u(x) in this case has a factor in Z[x] of degree k. Then there exist w1(x) and w2(x)
in Z[x] with u(x) = w1(x)w2(x) and degw1(x) = k. We consider the Newton polygon for
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u(x) = v(x) with respect to p. Since the slopes of the edges of the Newton polygon for u(x)
increase from left to right, the conditions of the lemma imply that each edge has slope in
[0, 1/k). The left-most edge of the Newton polygon may have slope 0. For now, we consider
an edge of the Newton polygon which does not have slope 0. Let (a, b) and (c, d) be two
lattice points on such an edge. Then the slope of the line passing through these points is the
slope of the edge so that

1

|c− a| ≤
|d− b|
|c− a| <

1

k
.

Hence, |c − a| > k. In other words, any two lattice points on an edge with non-zero slope
of the Newton polygon for u(x) with respect to p have their x-coordinates separated by a
distance > k. Since degw1(x) = k, translates of the edges of the Newton polygon for w1(x)
with respect to p cannot be found within those edges of the Newton polygon for u(x) with
respect to p which have non-zero slope. Lemma 2.1 implies that the left-most edge of the
Newton polygon for u(x) must have slope 0 and length ≥ k. The conditions of the lemma
imply that ν(cm−j) ≥ 1 for j ∈ {k, k+ 1, . . . ,m} so that if the left-most edge of the Newton
polygon for u(x) with respect to p has slope 0, then it has length < k, giving a contradiction.

Next, we consider the general case of arbitrary integers a0, a1, . . . , am with a0 = ±1 and
am = ±1. Observe that p - amcm and p|ajcj for all j ∈ {0, 1, . . . ,m − k}. The conditions
on a0 and am imply that the left and right-most endpoints of the Newton polygon for u(x)
with respect to p are the same as the left and right-most endpoints of the Newton polygon
for v(x) with respect to p, respectively. All the edges of the Newton polygon for v(x) with
respect to p lie above or on the line containing its right-most edge. The same statement
holds for u(x) in place of v(x). Note that ν(ajcj) ≥ ν(cj) for all j ∈ {0, 1, . . . ,m}. Hence, we
also get that all the edges of the Newton polygon for u(x) lie above or on the line containing
the right-most edge of the Newton polygon for v(x). Since the right-most endpoint for each
of these two Newton polygons is the same, we deduce that the slope of the right-most edge
of the Newton polygon for u(x) is less than or equal to the slope of the right-most edge of
the Newton polygon for v(x). Therefore, the right-most edge of the Newton polygon for
u(x) must have slope < 1/k. Thus, u(x) satisfies the same conditions imposed on v(x) in
the statement of the lemma so that by appealing to the first part of the proof, the lemma
follows. �

The above proof relies on the fact that the conditions imposed on v(x) must be satisfied
also by u(x). Indeed, it would not weaken the lemma if we simply conclude that v(x) does
not have a factor in Z[x] of degree k. The wording, however, clarifies how a general theorem
like Theorem 2.2, involving arbitrary integers aj with |a0| = |am| = 1, can be established by
considering the special case that each aj = 1.

For the purposes of dealing with Laguerre polynomials, we will want to take cj = bj, as
defined in the introduction. Then u(x) = f(x), and the lemma is asserting that f(x) cannot
have a factor in Z[x] of degree k if there is a prime p satisfying certain conditions. One of
these conditions is that p - bm which will hold trivially since bm = 1. Another condition
is that p must divide bj for 0 ≤ j ≤ m − k. We will obtain such a prime by taking p to
be a divisor of ∆(n, k) with n chosen appropriately. Choosing a large prime divisor of this
type will aid in establishing the final condition that the slope of the right-most edge of the
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Newton polygon of say

g(x) =
m∑

j=0

bjx
j

is < 1/k. It is in this way that we will connect the use of Theorem 1.1 to the irreducibility
of Laguerre polynomials. This connection is clarified by our next lemma.

Lemma 2.4 Let m, k and α be positive integers with k ≤ m/2. Suppose that p is a prime
divisor of ∆(m− k + 1 + α, k) or of ∆(m− k + 1, k) satisfying both of the following:

(i) p does not divide ∆(α+ 1, k).

(ii) p ≥ kα

k + 1
+ k + 1.

Then f(x) does not have a factor in Z[x] of degree k.

Proof Assume f(x) has a factor in Z[x] of degree k. Suppose first that p | ∆(m−k+1+α, k).
In this case, as ∆(m − k + 1 + α, k) divides bj for 0 ≤ j ≤ m − k, we deduce p|bj for
0 ≤ j ≤ m− k. Now, suppose p | ∆(m− k + 1, k). In this case, we justify also that p|bj for
0 ≤ j ≤ m− k. Since p | ∆(m− k + 1, k), we have p divides m(m− 1) · · · (m− k + 1). For
m− p+ 1 ≤ j ≤ m− k, we use that p > m− j to see that p divides the binomial

(
m

j

)
=
m(m− 1) · · · (j + 1)

(m− j)!
.

Hence, p|bj for m− p+1 ≤ j ≤ m− k. On the other hand, if j ≤ m− p, then the expression
(m+α)(m−1+α) · · · (j+1+α) in the definition of bj consists of a product of ≥ p consecutive
integers and is therefore divisible by p. We deduce then that p|bj for all j ≤ m − k in this
case as well.

The rest of our argument works for both choices of p as above. Since bm = 1, clearly
p - bm. By Lemma 2.3, it suffices to show that the right-most edge of the Newton polygon
of g(x) has slope < 1/k. Setting ν = νp, we have that the slope of this right-most edge is

max
1≤j≤m

{
ν(b0) − ν(bj)

j

}
.

Observe that
b0
bj

=
(j + α)(j − 1 + α) · · · (1 + α)(

m
j

) .

It follows that
ν(b0) − ν(bj) ≤ ν

(
(j + α)(j − 1 + α) · · · (1 + α)

)
.

If 1 ≤ j ≤ k, then (i) implies that the right side is 0. Hence,

ν(b0) − ν(bj) ≤ 0 <
j

k
for j ≤ k. (1)
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For j > k, we note that the inequality (j+α)/(p−1) ≤ j/k holds provided j(p−k−1) ≥ kα.
For j > k, we have j ≥ k+1 so that j(p−k−1) ≥ (k+1)(p−k−1) ≥ kα by (ii). Therefore,

ν(b0) − ν(bj) ≤ ν
(
(j + α)!

)
<

∞∑
j=1

j + α

pj
=
j + α

p− 1
≤ j

k
for j > k. (2)

Combining (1) and (2), we obtain

ν(b0) − ν(bj)

j
<

1

k
for 1 ≤ j ≤ m.

Lemma 2.3 now implies that f(x) cannot have a factor in Z[x] of degree k. �

We step back a moment and take another look at this proof. In particular, we note the
role of the binomial

(
m
j

)
in the proof. Or more precisely, we note when it was not used. In

the case that p | ∆(m − k + 1 + α, k), the binomial
(

m
j

)
is insignificant. In other words, if

the factor
(

m
j

)
is omitted from our definition of bj, then the above lemma would hold as it

is provided we restrict p to being a divisor of ∆(m− k + 1 + α, k). The importance of this
remark lies in the fact that if we omit the factor

(
m
j

)
in bj and take α = 0, then f(x) becomes

m! ·
(
am

xm

m!
+ am−1

xm−1

(m− 1)!
+ · · · + a1x+ a0

)
.

Thus, f(x) not having a factor (in Z[x]) of degree k in this case corresponds to establishing
that the polynomial in Theorem 2.2 does not have a factor of degree k. The above proof
shows then that this polynomial cannot have a factor of degree k if there is a prime p dividing

∆(m− k + 1, k) = m(m− 1) · · · (m− k + 1)

satisfying (i) and (ii) with α = 0. The latter simply means that we want a prime p ≥ k + 1
that divides the above product. Observe that m− k + 1 > k if k ≤ m/2. A classic result of
J. J. Sylvester [40] implies that if k ≤ m/2, then such a prime p exists; that is, the product
of k consecutive integers > k must be divisible by a prime > k. We deduce then that the
polynomial in Theorem 2.2 cannot have a factor in Z[x] of degree k ∈ [1,m/2]. It follows
that the polynomial must be irreducible and the theorem follows.

We note that the use of Sylvester’s theorem above could have been replaced by an appli-
cation of Theorem 1.1 and Lemma 3.2 below. Indeed, an early motivation for results of the
type given by Theorem 1.1 is an interest in improving Sylvester’s theorem. Schur’s paper
[30] consists largely of giving a proof of Sylvester’s theorem; apparently, Schur was unaware
at the time that the result was known. Later P. Erdős [7], early in his career, gave an elemen-
tary argument of Sylvester’s theorem. This clearly motivated later work of Erdős [8] where
he obtained a stronger result and posed related problems. Some of the contributions along
these lines include the work of K. Ramachandra [26], R. Tijdeman [41], and T. N. Shorey
[35].

Before leaving this section, we note that the first author [9] generalized Theorem 2.2 by
relaxing the condition that am = ±1. More precisely, he showed that one can take am to
satisfy 0 < |am| < m unless (am,m) ∈ {(±5, 6), (±7, 10)}. Similar generalizations have been
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obtained by M. Allen and the first author [1, 2] for other irreducibility results of Schur. The
methods again involve both an application of Lemma 2.1 as well as information about large
primes dividing products of consecutive integers. Besides results already cited in this paper,
the works of J. B. Rosser and L. Schoenfeld [27] and L. Schoenfeld [28] should be noted for
contributing to the needed prime number estimates. A similar approach can be found also in
the work of the first author and R. L. Williams, Jr. [13] and, in the case of applying Lemma
2.1, the prior work of R. Gow [16].

3 The Proof of Theorem 1.2

In this section, we establish Theorem 1.2. Although the case α ∈ {0, 1} has already been
handled by Schur [30, 33], we needn’t take advantage of this history. The case α = 0, as
mentioned, follows from Theorem 2.2. In this section, we restrict ourselves therefore to
α ∈ {1, 2, . . . , 10}. We begin with showing the important role that is played by Theorem
1.1.

Lemma 3.1 Let m and α be positive integers with m ≤ 150 and α ∈ {1, 2, . . . , 10}. Then

L
(α)
m (x) is irreducible unless (m,α) is one of the pairs (2, 2), (4, 5), and (2, 7). In these

cases, L
(α)
m (x) is the product of a linear polynomial in Q[x] and an irreducible polynomial of

degree m − 1. Furthermore, the more general polynomial f(x) is irreducible for all choices
of integers aj with |am| = |a0| = 1 except possibly for the pairs (m,α) ∈ T where

T = {(2, 2), (2, 7), (4, 4), (4, 5), (8, 8), (24, 8)}.

If (m,α) ∈ T , then either f(x) is irreducible or it is a product of a linear polynomial in Z[x]
and an irreducible polynomial of degree m− 1.

The first part of this lemma involving L
(α)
m (x) is done with a direct computation, which

we did using Maple, Version 9.5. The second part of the lemma involving the polynomials
f(x) is a more difficult computation and involves some analysis of the data. As this part of
the lemma is only applied to establishing Theorem 1.3, which is the emphasis of the next
section, we defer the proof to the next section. To establish Theorem 1.2, Lemma 3.1 implies
that we may suppose m > 150, and we do so. Observe that the conditions of Theorem 1.2
and m > 150 imply that (m− k + 1 + α, k) 6∈ B, where B is as defined in Theorem 1.1.

Assume f(x), as formulated in the introduction, is reducible. Then f(x) has a factor in
Z[x] of degree say k ≤ m/2. For the moment, we suppose that k ≥ max{3, 1.25α}. Since
m − k + 1 + α > m − k ≥ k, we deduce then from Theorem 1.1 that there is a prime
p > 1.8k that divides ∆(m − k + 1 + α, k). We justify that the conditions in Lemma 2.4
hold so that that lemma provides us with a contradiction. Observe that it suffices to show
p > k + α since this will imply both (i) and (ii). Since k ≥ 1.25α, we in fact have that
p > k + 0.8k ≥ k + α as desired. We have so far established then that f(x) cannot have a
factor of degree ≥ max{3, 1.25α}. In other words, Theorem 1.1 has immediately narrowed
down our consideration of factors to only those of small degree. More precisely, we are left
with considering

k < max{3, 1.25α}.
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In particular, with α as in Theorem 1.2, we are left only with considering factors of degree
≤ 12.

For the remaining small possibilities for k, we will need something stronger than Theorem
1.1 in regards to the largest prime factor dividing the product of k consecutive integers. In
this regard, it is of some interest to note here that we may now appeal to Theorem 1 of
S. Laishram and T. N. Shorey’s paper [22]. By making use of the fact that m > 150 and
k ≤ 12, we can deduce that there is a prime p > 2k dividing ∆(m− k+ 1 +α, k) and repeat
the above argument. This would allow us to deduce k < max{3, α}. However, we will not
make use of this additional reduction and appeal instead to a different approach to handle
all k < max{3, 1.25α}. We combine the work of D. H. Lehmer [23] with some of our own
computations.

Lemma 3.2 If m is an integer ≥ 150 and P (m(m+1)) ≤ 11, then m is one of the following:

175, 224, 242, 384, 440, 539, 2400, 3024, 4374, 9800.

Lemma 3.3 For p a prime, let m(p) denote the largest integer m such that m(m+1)(m+2)
has all of its prime factors ≤ p. Table 3 lists the values of m(p) for all odd primes ≤ 41.

p m(p)

41 212380

37 17575

31 13454

29 13310

23 2430

19 2430

p m(p)

17 440

13 350

11 98

7 48

5 8

3 2

Table 3: Values of m(p)

The above two lemmas follow from work of D. H. Lehmer [23]. The first of these lemmas
is an immediate consequence of the tables there. For a proof of the second lemma, we used
Table IB in [23] to obtain the value of m(41) (looking for occurrences of two consecutive
integers in this table) and then did a computation of m(p) for p ≤ 37 noting that m(p) ≤
m(41) ≤ 212380 for each such prime.

The next lemma we established by solving various Thue equations using KASH. The
algorithm in KASH is based on an algorithm of Y. Bilu and G. Hanrot [3] which itself takes
advantage of methods developed by N. Tzanakis and B. M. M. de Weger [42]. To handle
the possibility of linear factors, we will consider k = 1 in Lemma 2.4. Accordingly, for each
α ∈ {1, 2, . . . , 10}, we want one of m+α and m to have a prime factor p satisfying p - (α+1)
and p ≥ (α/2) + 2. We set

P = Pα = {p : p prime, p = α+ 1 or p < (α/2) + 2}.

Observe that P contains every prime divisor of α+ 1 since (α+ 1)/2 < (α/2) + 2. Suppose
that each prime p dividing one of m + α and m is also in P . This is precisely the case
where Lemma 2.4 does not eliminate the possibility of L

(α)
m (x) having a linear factor in Z[x].
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Therefore, in this case, each of m + α and m, having all of its prime factors in P , can be
written as a cube times a product of distinct primes in P appearing to the first or second
power. In other words, the equation (m+α)−m = α can be expressed as the Thue equation

AX3 −BY 3 = α,

where each of A and B divides ∏
p∈P

p2.

Therefore, if m(m+α) has all of its prime factors in P , then m must be of the form BY 3 for
some Thue equation as above. Thus, we can determine all such m by solving each of these
Thue equations. Because of Lemma 3.1, we are interested in m > 150. The results of these
computations are as follows.

Lemma 3.4 For each α ∈ {1, 2, . . . , 10}, the integers m > 150 that satisfy m(m + α) has
all of its prime factors in P are as indicated in Table 4.

α primes in P m’s

1 2 none

2 2, 3 none

3 2, 3 none

4 2, 3, 5 320

5 2, 3 none

6 2, 3, 7 162, 288, 378

7 2, 3, 5 243

8 2, 3, 5 192, 640

9 2, 3, 5 216, 375, 720

10 2, 3, 5, 11 240, 320, 440, 540, 800, 990, 1200, 2420

Table 4

Lemma 3.4 implies that the only cases of f(x) having a linear factor in Z[x] for m > 150
must occur in the final column of the row corresponding to α. These polynomials in general
will have large coefficients, so we will want to address how one can verify that in fact no
linear factors exist in these cases. We will return to that momentarily.

We consider next α ∈ {1, 2, . . . , 10} and 3 ≤ k < 1.25α. Recall that our assumption is
that f(x) has a factor of degree k. We show that we can narrow down our consideration of
pairs (α, k) to values in rows of Table 5. Observe that Lemma 3.3 and m > 150 imply that
∆(m− k + 1 + α, 3) and, hence, ∆(m− k + 1 + α, k) is divisible by a prime p > 11. Using
this prime, one checks that Lemma 2.4 implies that if (α, k) does not correspond to a pair
given by Table 5, then f(x) does not have a factor of degree k and we obtain a contradiction.
Thus, (α, k) is as in Table 5.

We illustrate the approach we used to eliminate the finite list of possibilities for (α, k)
given in the table. We consider two cases that sufficiently demonstrate how to eliminate all
the pairs given in the table and leave out the details for the remaining cases. For α = 10 and
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α k

6 k = 7

7 6 ≤ k ≤ 8

8 5 ≤ k ≤ 9

9 4 ≤ k ≤ 11

10 3 ≤ k ≤ 12

Table 5

k = 3, Lemma 2.4 implies that we need only show that one of ∆(m−k+1+α, k) = ∆(m+8, 3)
and ∆(m − k + 1, k) = ∆(m − 2, 3) has a prime factor p ≥ 17. Applying Lemma 3.3, we
see that such a p dividing ∆(m + 8, 3) exists in this case provided m > 342. Recall that
m > 150. For 150 < m ≤ 342, we check directly whether ∆(m + 8, 3) has a prime factor
≥ 17. In fact, in this case, m = 342 is the only m > 150 for which P

(
∆(m + 8, 3)

)
< 17.

On the other hand, for m = 342, we have ∆(m − 2, 3) = ∆(340, 3) is divisible by 31 which
exceeds 17. Thus, Lemma 2.4 implies that f(x) cannot have a factor of degree k = 3, giving
a contradiction in this case.

For our second example, we consider α = 10 and k = 12. For the purposes of applying
Lemma 2.4, we consider the largest prime dividing ∆(m − k + 1 + α, k) = ∆(m − 1, 12)
and the largest prime dividing ∆(m − k + 1, k) = ∆(m − 11, 12). We want one of these to
have a prime factor ≥ 23. By Lemma 3.3, we see that (m − 1)m(m + 1) which is a factor
of ∆(m − 1, 12) is divisible by a prime ≥ 23 provided m > 2431. We first check directly
for m ∈ [151, 2431] to determine for which m the value of ∆(m − 1, 12) has all of its prime
factors < 23. In fact, this computation is enough in this case as even the smaller product
∆(m − 1, 5) has a prime factor ≥ 23 for every m ∈ [151, 2431]. Since m ≥ 151, Lemma 2.4
implies a contradiction.

We have now only to consider k ≤ 2. We begin with k = 2. Lemma 2.4 implies a
contradiction in this case if there is a prime p > 11 dividing either (m + α)(m − 1 + α) or
m(m − 1). As m > 150 and α ≥ 1, Lemma 3.2 implies that each of m − 1 and m − 1 + α
must be among the positive integers listed in that lemma. As this list consists of integers
any two of which differ by ≥ 18 > α, we deduce that this is impossible. Hence, k 6= 2.

We are left with the possibility that k = 1, in other words with establishing that f(x)
does not have a linear factor in Z[x]. Observe that given f(x) does not have a factor in Z[x]
with degree in [2,m/2], if f(x) has a linear factor in Z[x], then f(x) is a linear polynomial
times an irreducible polynomial of degree m−1. As noted earlier, Lemma 2.4 and Lemma 3.4
imply (α,m) must come from one of the 18 pairs indicated in Table 4. For the remainder of

this section, we restrict to considering the polynomials L
(α)
m (x) which will complete our proof

of Theorem 1.2. The argument here can be skipped as the next section will include a more
general argument that handles these 18 pairs for f(x). On the other hand, the remainder
of this section has some value as it provides a more direct and simpler argument and at
the same time provides us with a chance to elaborate on some further literature and history
regarding the Laguerre polynomials.

As L
(α)
m (x) is monic, linear factors in Z[x] correspond to integral roots. Such a root will

necessarily be a divisor of the constant term of L
(α)
m (x). Due to the size of the coefficients
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of L
(α)
m (x) as m increases and the large number of divisors that the constant term has, a

direct check seems somewhat infeasible. This is particularly true given that a large amount
of memory is necessary even to evaluate L

(α)
m (x) when m and x are large positive integers.

We also had in mind a desire to give an approach to our investigations that would allow
one to obtain similar results for α 6∈ {0, 1, . . . , 10}. So we sought to find an efficient method

to determine whether L
(α)
m (x) has an integer root. It should perhaps be noted that, despite

the remark made about numerous divisors of the constant term of L
(α)
m (x), one can narrow

down the number of integer roots that need be examined considerably by using bounds on
the roots of L

(α)
m (x). For example, for α ≥ 1, an easy consequence of work by M. E. H. Ismail

and X. Li [21] is that each root of L
(α)
m (x) is real and lies in the interval

(0, 4m+ 2α− 4].

We describe next some motivation for our approach. Although the motivation is some-
what technical, as we will see momentarily, the method itself is quite simple. The motivation
is nevertheless worth discussion as it gives us a chance to mention further historical investi-
gations on the Laguerre polynomials. There has been considerable work done on obtaining
the Galois groups associated with L

(α)
m (x) over Q. This includes the work of Schur [32, 33],

Coleman [4], Gow [16], Hajir [18, 19, 20] and Sell [34]. Classic work of B. L. van der Waerden
[45] implies that almost all polynomials in Z[x] of degree m have Galois group the symmetric

group Sm. The above work suggests that this is also the case for L
(α)
m (x). Indeed, the work

by Schur [32, 33], Gow [16] and the recent work by Kidd, Trifonov and the first author
noted in the last line of Table 2 are motivated in part to showing that for each positive
integer m, there exists some α for which the Galois group of L

(α)
m (x) is different from Sm.

In particular, these combined works have only now been able to accomplish this goal by
showing that the alternating group Am can be achieved as the Galois group for each positive
integer m. Seeking polynomials with specified Galois groups has a long history and falls into
the area of Inverse Galois Theory (cf. [24]). Assuming that a polynomial of degree > 1 in
Theorem 1.2 is typical in that its associated Galois group is the symmetric group, then the
classical Chebotarev Density Theorem (cf. [14] and [15]) implies that the density of primes p
for which such a polynomial has no roots modulo p is at least 1/3 and asymptotically, as m
tends to infinity, 1/e. We note that it is not the case that all of the polynomials in Theorem
1.2 have associated Galois group the symmetric group; the motivation is based simply on
what one can expect of random polynomials under consideration without any computations
of the actual Galois groups. Also, it is worth mentioning that even in the case that the
Galois group is not the symmetric group, the density of primes p for which a polynomial
has no roots modulo p can be estimated through use of the Chebotarev Density Theorem;
in particular, for polynomials with degree > 1 and Galois group the alternating group, this
density is at least 1/4 and asymptotically, as m tends to infinity, also 1/e.

Given that we can expect that L
(α)
m (x) will have no roots modulo p for at least 1/3 of

the primes, the idea is simple. We fix α and m under consideration. Next, we take a prime
p and, to keep the size of the coefficients small, we compute the coefficients bj modulo p
recursively by using that bm = 1 and

bm−j−1 ≡ bm−j ·
m− j

j + 1
· (m− j + α) (mod p) for 0 ≤ j ≤ m− 1. (3)
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In this way, we obtain bj ∈ {0, 1, . . . , p − 1} such that bj ≡ bj (mod p) for each j ∈
{0, 1, . . . ,m}. Next, we check whether L

(α)
m (x) has a root modulo p by considering the

value of
m∑

j=0

bjz
j (mod p) (4)

for each z ∈ {0, 1, . . . , p− 1}. To avoid the trivial root 0 modulo p and concerns about the
denominator in (3) being 0 modulo p, we consider only p > m+α. Also, to avoid computing
large values of zj in (4) prior to the reduction modulo p, we compute exponentiation modulo
p in a more efficient way. Making use of Maple, Version 9.5, as we did, efficiently computing
zj in this manner corresponds to using &^ for exponentiation.

The above approach was used to determine, for a given α and m appearing in Table 4,
a prime p for which L

(α)
m (x) has no roots modulo p. It follows then that each such L

(α)
m (x)

cannot have an integer root and, hence, a factor of degree 1. This leads to a contradiction
which completes our proof of Theorem 1.2. For the purposes of checking our work, we give
in Table 6 below the list of primes we found for which L

(α)
m (x) has no root modulo p with α

and m as in Table 4. In connection to the comments motivating this approach, we note that

α m prime

4 320 353

6 162 173

6 288 337

6 378 389

7 243 257

8 192 211

α m prime

8 640 673

9 216 251

9 375 389

9 720 743

10 240 257

10 320 331

α m prime

10 440 457

10 540 571

10 800 821

10 990 1019

10 1200 1213

10 2420 2437

Table 6: Primes establishing there are no linear factors in Z[x]

the maximal number of primes that we needed to consider for any pair (α,m) in the table
was 6 and that the average number of primes considered was exactly 2.5.

4 The Proof of Theorem 1.3

The previous sections have provided us with much of the ground work for establishing The-
orem 1.3. We have in fact completed our argument for this theorem except for the following
matters. First, we still need to justify the second part of Lemma 3.1 dealing with f(x).
Second, we need to explain why f(x) cannot have a linear factor in Z[x] for the 18 values
of (m,α) given in Table 4. Once these are completed, our proof of Theorem 1.3 will rest on
justifying that if f(x) is a reducible polynomial corresponding to (m,α) ∈ T , where T is as
in Lemma 3.1, then f(x) has a linear factor appearing in the corresponding last column of
Table 1 and the remaining factor is irreducible. The approach of the previous section for
handling these matters in the case that f(x) = L

(α)
m (x) took advantage of the fact that there

are a finite number of (m,α) under consideration and, hence, a finite number of polynomi-

als L
(α)
m (x) to consider. For general f(x) with variable aj, there are an infinite number of

polynomials to consider for each pair (m,α) with m > 1. Nevertheless, we can give a single
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computational approach that will handle these infinite classes of polynomials. We describe
this next.

Lemma 2.4 played a crucial role in establishing Theorem 1.2, so it is reasonable to look
back at this lemma for some further insight. In fact, a close look at the proof of this
lemma suggests that some improvements may be possible, improvements that we will take
advantage of now. We emphasize some main points in the proof. First, our choice of p
as a prime dividing ∆(m − k + 1 + α, k) or ∆(m − k + 1, k) gives us the condition that
p|bj for 0 ≤ j ≤ m − k needed to apply Lemma 2.3. Next, (i) and (ii) allowed us to
obtain the estimates for (1) and (2), which establish that the right-most edge of the Newton
polygon of g(x) has slope < 1/k. Then we were able to apply Lemma 2.3 to finish the
proof of Lemma 2.4. The key to improving here on what we did there is in noticing that
(1) and (2)were based on some rather weak estimates. For both (1) and (2), we ignored
the contribution of

(
m
j

)
to the coefficients; for (2), we furthermore overestimated the size of

ν
(
(j + α)(j + α− 1) · · · (1 + α)

)
with ν

(
(j + α)!

)
.

Faced with the possibility of improving Lemma 2.4 while at the same time realizing that
the improvement is only needed for a finite number of choices of (m,α), we replace the
argument given in (1) and (2) with an exact calculation for a given (m,α). In other words,
for each choice of (m,α) with m ≤ 150 and α ∈ {0, 1, . . . , 10}, we consider each positive
integer k ≤ m/2 and then each prime dividing ∆(m − k + 1 + α, k) or ∆(m − k + 1, k). If
the largest such prime exceeds k+α, then the conditions in Lemma 2.4 are satisfied and we
know f(x) cannot have a factor of degree k. Otherwise, we compute the exact value of

max
1≤j≤m

{
ν(b0) − ν(bj)

j

}
.

If the value of this maximum is < 1/k for any prime dividing ∆(m − k + 1 + α, k) or
∆(m−k+1, k), then f(x) cannot have a factor of degree k. Otherwise, we cannot determine
if f(x) has a factor of degree k. We do a similar argument with k = 1 and the 18 pairs given
by Table 4, computing the maximum above to see if it is less than 1. The computations,
done with Maple, Version 9.5, established that f(x) cannot have a factor of degree k except
possibly for the following triples (m,α, k):

(2, 2, 1), (2, 6, 1), (2, 7, 1), (4, 4, 1), (4, 5, 1),

(4, 5, 2), (6, 4, 2), (6, 4, 3), (8, 8, 1), (24, 8, 1).

In particular, the 18 pairs (m,α) given in Table 4 do not lead to f(x) having a linear factor
in Z[x]. As noted in the introduction, the triples (2, 2, 1), (2, 7, 1) and (4, 5, 1) can be realized

as leading to reducible polynomials by simply taking f(x) = m!L
(α)
m (x). In each of these

cases, x − 6 is a factor. In the case that m = 2, the polynomial m!L
(α)
m (x) is quadratic

and, hence, has a second linear factor. For (m,α) = (2, 2), the second factor is x − 2; for
(m,α) = (2, 7), the second factor is x−12. The remaining factors in Table 1, where (m,α) is
one of (2, 2), (2, 7) and (4, 5), come from replacing x with −x. We also gave examples in the
introduction showing that each of x± 2, x± 6 and x± 18 can be a factor if (m,α) = (8, 8).
We justify next that f(x) can have the linear factors indicated in Table 1 if (m,α) is one of
the pairs (4, 4) and (24, 8), that f(x) cannot have a linear factor if (m,α) = (2, 6), that f(x)
cannot have a quadratic factor if (m,α) equals (4, 5) or (6, 4), and that f(x) cannot have a
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cubic factor if (m,α) = (6, 4). Then we will turn to showing that each reducible f(x) with
(m,α) ∈ T has a linear factor appearing in the corresponding last column of Table 1.

Consider (m,α) = (4, 4). Observe that if

a4 = 1, a3 = −4, a1 = 1, a0 = −1,

and a2 = 0, then f(x) has a factor of x− 2. On the other hand, if

a4 = 1, a3 = 1, a1 = −3, a0 = −1,

and a2 = 0, then f(x) has a factor of x− 10. In the case (m,α) = (24, 8), we choose

a24 = 1, a23 = 371688956836585083, a1 = −2158979, a0 = −1,

and aj = 0 for all other j to obtain the factor x− 6 for f(x). Replacing x with −x in these
examples establishes that each linear factor listed in Table 1 occurs as a linear factor of f(x)
if the aj’s are chosen appropriately.

In the case that (m,α) = (2, 6), the Newton polygon of f(x) with respect to the prime 2 is
a single edge joining (0, 0) to (2, 3). Hence, f(x) is irreducible in this case and, in particular,
cannot have a linear factor.

We consider now the case (m,α) = (4, 5). We want to justify in this case that f(x) cannot
have a quadratic factor in Z[x]. The Newton polygon of g(x) =

∑4
j=0 bjx

j with respect to 3
consists of two edges, one joining the point (0, 0) to (3, 2) and one joining (3, 2) to (4, 3). As
f(x) =

∑4
j=0 ajbjx

j with |a4| = |a0| = 1, the points (0, 0) and (4, 3) are endpoints of edges
of the Newton polygon of f(x) with respect to 3. We consider two possibilities depending
on whether 3 | a1 or not. If 3 | a1, then the Newton polygon of f(x) with respect to 3 is a
single line segment joining (0, 0) and (4, 3), and we deduce from Lemma 2.1 that f(x) is in
fact irreducible. If 3 - a1, then the Newton polygon of f(x) with respect to 3 is the same as
the Newton polygon of g(x) with respect to 3, and we deduce from Lemma 2.1 that f(x) is
either irreducible or it is a linear polynomial times an irreducible cubic. In either case, we
see that f(x) cannot have a quadratic factor in Z[x].

In the case that (m,α) = (6, 4), the Newton polygon of g(x) with respect to 5 consists
of two edges, one joining (0, 0) to (5, 1) and one joining (5, 1) to (6, 2). If 5 | a1, then the
Newton polygon of f(x) with respect to 5 is a single line segment joining (0, 0) and (6, 2),
and we deduce from Lemma 2.1 that if f(x) is reducible, then f(x) is the product of two
irreducible cubics. If 5 - a1, then the Newton polygon of f(x) with respect to 5 is the same
as the Newton polygon of g(x) with respect to 5, and we deduce from Lemma 2.1 that if
f(x) is reducible, then it is a linear polynomial times an irreducible quintic. In either case
here, we see that f(x) cannot have a quadratic factor in Z[x].

Finally, we turn to establishing if (m,α) = (6, 4), then f(x) does not have a cubic factor
in Z[x]. The Newton polygon of g(x) with respect to 3 consists of a single edge joining (0, 0)
to (6, 3). The Newton polygon of f(x) with respect to 3 in this case is the same as the
Newton polygon of g(x) with respect to 3. We deduce from Lemma 2.1 that each irreducible
factor of f(x) has an even degree. Hence, f(x) cannot have a cubic factor in Z[x].

We turn now to establishing that if f(x) has a linear factor in Z[x] for some (m,α)
appearing in Table 1, then it must have one of the factors listed in the last column of that
table. We give a simple lemma and a couple of examples which adequately explain the
procedure we used in each case.
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Lemma 4.1 Let w(x) be a monic polynomial in Z[x] divisible by x− a with a ∈ Z. Let p be
a prime and e a nonnegative integer for which pe‖a. Then the Newton polygon of w(x) with
respect to p has an edge that includes a translate of the line segment joining (0, 0) to (1, e).
Also, if the right-most edge has slope < 1, then necessarily e = 0.

The first part of the lemma, involving the translated edge, is a straight-forward applica-
tion of Lemma 2.1. Observe that if the right-most edge of the Newton polygon has slope < 1,
then so do all of the edges so that the only possibility for the Newton polygon to contain a
translation of the edge from (0, 0) to (1, e) is for e to equal 0 as claimed. Before proceeding,
we note also that Lemma 4.1 or a simple application of the classical Rational Root Test
implies that if p | a, then p divides the constant term of w(x). Observe that since f(x) is
monic, if f(x) is reducible, then it has a factor of the form x − a where a ∈ Z. We are
therefore able to take w(x) = f(x) in Lemma 4.1 to obtain information about the factors
x− a that can divide f(x).

Consider the case that (m,α) = (4, 5). The constant term of f(x) is 3024 = 24 · 33 · 7.
Observe that the slope of the right-most edge of the Newton polygon for f(x) with respect
to some prime is no more than the slope of the right-most edge of the Newton polygon for
g(x) with respect to the same prime. As the latter slope is < 1 for p = 7, we deduce that
a cannot be divisible by primes p ≥ 5. The Newton polygon of g(x) with respect to 2 is a
single line segment from (0, 0) to (4, 4) and is also the Newton polygon of f(x) with respect
to 2. Hence, Lemma 4.1 implies that 2‖a. The Newton polygon of g(x) with respect to 3
consists of two segments, one joining (0, 0) to (3, 2) and one joining (3, 2) to (4, 3). If 3 - a1,
then the Newton polygon of f(x) with respect to 3 is the same as the Newton polygon of
g(x) with respect to 3 and, by Lemma 4.1, we deduce 3 | a. If 3 | a1, then the Newton
polygon of f(x) with respect to 3 is a single line segment from (0, 0) to (4, 3) and Lemma
2.1 implies f(x) is irreducible. Therefore, we obtain in this case that a = ±6, which justifies
the row corresponding to (m,α) = (4, 5) in Table 1.

Consider next the case that (m,α) = (8, 8). The constant term of f(x) is ±518918400
which is divisible only by primes ≤ 13. As the slope of the right-most edge of the Newton
polygon for g(x) with respect to each prime ∈ [5, 13] is < 1, we deduce the same is true
of the slope of the right-most edge of the Newton polygon for f(x). Therefore, Lemma 4.1
implies that the only primes dividing a are ≤ 3. The Newton polygon of g(x) with respect
to 2 is a single line segment from (0, 0) to (8, 8) and is also the Newton polygon of f(x) with
respect to 2. Hence, Lemma 4.1 implies that 2‖a. The Newton polygon of g(x) with respect
to 3 consists of three segments, one joining (0, 0) to (1, 0), one joining (1, 0) to (7, 2) and
the final one joining (7, 2) to (8, 4). There are a few possibilities for the Newton polygon of
f(x) with respect to 3, but we do not need to analyze them as our interest now is simply
in showing that 33 - a as, once this is shown, we can deduce that a ∈ {±2,±6,±18} as
indicated in Table 1. Assume 33 | a. Then Lemma 4.1 implies that the Newton polygon
of f(x) with respect to 3 has an edge with slope ≥ 3. The slope of the right-most edge of
the Newton polygon of f(x) with respect to 3 has a slope that is no more than the slope of
the right-most edge of the Newton polygon of g(x) with respect to 3. As the latter slope is
2, the slope of each edge of the Newton polygon of f(x) with respect to 3 is ≤ 2, giving a
contradiction and completing the argument for (m,α) = (8, 8).

For each (m,α) listed in Table 1, a similar analysis was done. We omit the details.
The proof of Theorem 1.3 is essentially done. We should note, however, in establishing

18



that a polynomial f(x) ∈ Z[x] of degree m does not have a factor in Z[x] of degree k ≤ m/2
unless k = 1, we have also shown that either f(x) is irreducible or it is the product of a
linear polynomial and an irreducible polynomial of degree m−1. This can be seen as follows.
Suppose f(x) has a factor x− a as in Table 1, so f(x) = (x− a)w(x) for some w(x) ∈ Z[x]
of degree m− 1. We want to show w(x) is irreducible. Clearly, this is the case if m = 2. If
m 6= 2, then Table 1 implies m ≥ 4. If w(x) is reducible, then it has a factor u(x) ∈ Z[x]
of degree ≤ (m − 1)/2. We deduce that one of u(x) and (x − a)u(x) is a factor of f(x) of
degree strictly > 1 and ≤ m/2. This is a contradiction as f(x) has been shown to have no
nonlinear factors in Z[x] of degree ≤ m/2. Hence, the proof of Theorem 1.3 is complete.
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[6] G. Eisenstein, Über die Irreductibilität und einige andere Eigenschaften der Gleichung,
von welcher die Theilung der ganzen Lemniscate abhängt, Crelle J. 39 (1850), 160–182.
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