
Final Exam: Optional - It cannot hurt your grade.

Grades that are on Test (from top to bottom)

It was computed as

(HW grade) · 0.5 + (Test grade) · 0.2
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.

Your course grade is at least the letter grade
mentioned below and probably equal to it.
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Homework Grade
Test Grade (out of 100%)

Test Grade out of a total of 60 possible points



0, 1-Polynomials

Example

f0(x) = 1

f1(x) = 1 + x3

f2(x) = 1 + x3 + x15

f3(x) = 1 + x3 + x15 + x16

f4(x) = 1 + x3 + x15 + x16 + x32

f5(x) = 1 + x3 + x15 + x16 + x32 + x33

f6(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34

f7(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Problem: Prove that this sequence is infinite?
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Definitions and Notations: Let f(x) 2 C[x] with f(x) 6⌘ 0.
Define f̃(x) = xdeg ff(1/x). The polynomial f̃ is called
the reciprocal of f(x). The constant term of f̃ is always
non-zero. If the constant term of f is non-zero, then
deg f̃ = deg f and the reciprocal of f̃ is f . If ↵ 6= 0 is
a root of f , then 1/↵ is a root of f̃ . If f(x) = g(x)h(x)
with g(x) and h(x) in C[x], then f̃ = g̃h̃. If f = ±f̃ ,
then f is called reciprocal. If f is not reciprocal, we say
that f is non-reciprocal. If f is reciprocal and ↵ is a root
of f , then 1/↵ is a root of f . The product of reciprocal
polynomials is reciprocal so that a non-reciprocal poly-
nomial must have a non-reciprocal irreducible factor. For
f(x) 2 Z[x], we refer to the non-reciprocal part of f(x) as
the polynomial f(x) removed of its irreducible reciprocal
factors having a positive leading coe�cient. For example,
the non-reciprocal part of 3(�x+1)x(x2+2) is �x(x2+2)
(the irreducible reciprocal factors 3 and x � 1 have been
removed from the polynomial 3(�x + 1)x(x2 + 2)).



Lemma 9.1.1. Let f(x) be an arbitrary polynomial in Z[x].
If the non-reciprocal part of f(x) is reducible, then there
exist polynomials u(x) and v(x) in Z[x] satisfying u(x)
and v(x) are both non-reciprocal and f(x) = u(x)v(x).

Lemma 9.1.2. Let f(x) 2 Z[x] with f(0) 6= 0, and suppose
f(x) = u(x)v(x) where each of u(x) and v(x) is non-
reciprocal. Then the polynomial w(x) = u(x)ṽ(x) has
the following properties:

(i) w(x) 6= ±f(x) and w(x) 6= ±f̃(x).

(ii) w(x) ew(x) = f(x)f̃(x).

(iii) w(1)2 = f(1)2.

(iv) kwk = kfk.

Lemma 9.1.3. Suppose f(x) is a 0, 1-polynomial with
f(0) 6= 0 and f(x) = u(x)v(x) where each of u(x) and
v(x) is non-reciprocal and each of u(x) and v(x) has a
positive leading coe�cient. Then the polynomial w(x) =
u(x)ṽ(x) also has the following properties:

(v) w(x) is a 0, 1-polynomial with the same number of
non-zero terms as f(x).

(vi) w(1) = f(1).
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F (x) = u(x)v(x), w(x) = u(x)ṽ(x)

u(x) and v(x) are non-reciprocal

(v) if F is a 0, 1-polynomial, then w is also and with the
same number of non-zero terms as F

Proof.

F (x) =
rX

j=1

ajx
dj, w(x) =

sX

j=1

bjx
ej

✓ sX

j=1

bj

◆2


✓ sX

j=1

b2
j

◆2

=

✓ sX

j=1

a2
j

◆2

=

✓ sX

j=1

aj

◆2

=

✓ sX

j=1

bj

◆2

(v) follows

F (x) = u(x)v(x), w(x) = u(x)ṽ(x)
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Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?
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F (x) = xn + x35 + x34 + x33 + x32 + x16 + x15 + x3 + 1

f7(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35
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The list ends with f7(x).
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Two Steps:
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2. Handle non-reciprocal factors (there is only one).
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Step 1: Handle Reciprocal Factors

Let

g(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35.

If f is an irreducible reciprocal factor of

F (x) = xn + g(x),

then it divides
eF (x) = g̃(x)xn�35 + 1.

So f divides

g̃(x)F (x) � x35 eF (x)

= g(x)g̃(x) � x35.
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(Maple Time)

The list ends with f7(x).

Why is xn + f7(x) irreducible for all n � 36 ?

Two Steps:

1. Handle reciprocal factors (there are none).

2. Handle non-reciprocal factors (there is only one).
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Step 2: Handle Non-Reciprocal Factors

If n � 83, then

F eF = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35 + · · ·

where all subsequent terms have degree � 48.

w(x) = 1 + ??? + xn

ew(x) = 1 + ??? + xn

w(x) = 1 + x3 + · · · + xn

ew(x) = 1 + · · · + xn�3 + xn

Step 1: Handle Reciprocal Factors

Let

g(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35.

If f is an irreducible reciprocal factor of

F (x) = xn + g(x),

then it divides
eF (x) = g̃(x)xn�35 + 1.

So f divides

g̃(x)F (x) � x35 eF (x) = g(x)g̃(x) � x35.

Step 1: Handle Reciprocal Factors

Let

g(x) = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35.

If f is an irreducible reciprocal factor of

F (x) = xn + g(x)

then it divides
eF (x) = g̃(x)xn�35 + 1.

So f divides

g̃(x)F (x) � x35 eF (x) = g(x)g̃(x) � x35.

Lemma 1. If the non-reciprocal part of a polynomial F (x) 2
Z[x] is reducible, then there exist non-reciprocal polynomials
u(x) and v(x) in Z[x] such that F (x) = u(x)v(x).

Comment. If F (x) has a positive leading coe�cient, then we
may suppose u(x) and v(x) have positive leading coe�cients.

Lemma 2. Suppose the non-reciprocal part of F (x) 2 Z[x]
is reducible, and let u(x) and v(x) be as above. Then the
polynomial w(x) = u(x)ṽ(x) has the following properties:

(i) w 6= ±F and w 6= ± eF .

(ii) w ew = F eF .

(iii) w(1)2 = F (1)2.

(iv) kwk = kFk.
(v) If F is a 0, 1-polynomial, then w is also and with the

same number of non-zero terms as F .
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(ii) w ew = F eF

(iv) kwk = kFk
the same number

F eF = 1+x3 +x15 +x16 +x32 +x33 +x34 +x35 + · · ·

w(x) = 1 + x3 + · · · + xn

ew(x) = 1 + · · · + xn�3 + xn

w(x) = 1 + x3 + x15 + · · · + xn

ew(x) = 1 + · · · + xn�15 + xn�3 + xn

w(x) = 1 + x3 + x15 + x16 + · · · + xn

ew(x) = 1 + · · · + xn�16 + xn�15 + xn�3 + xn

So w = F !!

(i) w 6= ±F and w 6= ± eF

(iii) w(1) = F (1)

(v) w is a 0, 1-polynomial with of non-
zero terms as F

(ii) w ew = F eF

(iv) kwk = kFk
the same number

F eF = 1+x3 +x15 +x16 +x32 +x33 +x34 +x35 + · · ·

w(x) = 1 + x3 + · · · + xn

ew(x) = 1 + · · · + xn�3 + xn

w(x) = 1 + x3 + x15 + · · · + xn

ew(x) = 1 + · · · + xn�15 + xn�3 + xn

w(x) = 1 + x3 + x15 + x16 + · · · + xn

ew(x) = 1 + · · · + xn�16 + xn�15 + xn�3 + xn

So w = F !!

(i) w 6= ±F and w 6= ± eF

(iii) w(1) = F (1)

(v) w is a 0, 1-polynomial with of non-
zero terms as F

(ii) w ew = F eF

(iv) kwk = kFk
the same number

F eF = 1+x3 +x15 +x16 +x32 +x33 +x34 +x35 + · · ·

w(x) = 1 + x3 + · · · + xn

ew(x) = 1 + · · · + xn�3 + xn

w(x) = 1 + x3 + x15 + · · · + xn

ew(x) = 1 + · · · + xn�15 + xn�3 + xn

w(x) = 1 + x3 + x15 + x16 + · · · + xn

ew(x) = 1 + · · · + xn�16 + xn�15 + xn�3 + xn

So w = F !!



Step 2: Handle Non-Reciprocal Factors

If n � 83, then

F eF = 1 + x3 + x15 + x16 + x32 + x33 + x34 + x35 + · · ·

where all subsequent terms have degree � 48.

w(x) = 1 + ??? + xn

ew(x) = 1 + ??? + xn

w(x) = 1 + x3 + · · · + xn

ew(x) = 1 + · · · + xn�3 + xn

(i) w 6= ±F and w 6= ± eF

(iii) w(1) = F (1)

(v) w is a 0, 1-polynomial with of non-
zero terms as F

(ii) w ew = F eF

(iv) kwk = kFk
the same number

F eF = 1+x3 +x15 +x16 +x32 +x33 +x34 +x35 + · · ·

w(x) = 1 + x3 + · · · + xn

ew(x) = 1 + · · · + xn�3 + xn

w(x) = 1 + x3 + x15 + · · · + xn

ew(x) = 1 + · · · + xn�15 + xn�3 + xn

w(x) = 1 + x3 + x15 + x16 + · · · + xn

ew(x) = 1 + · · · + xn�16 + xn�15 + xn�3 + xn

So w = F !!

Lemma 1. If the non-reciprocal part of a polynomial F (x) 2
Z[x] is reducible, then there exist non-reciprocal polynomials
u(x) and v(x) in Z[x] such that F (x) = u(x)v(x).

Comment. If F (x) has a positive leading coe�cient, then we
may suppose u(x) and v(x) have positive leading coe�cients.

Lemma 2. Suppose the non-reciprocal part of F (x) 2 Z[x]
is reducible, and let u(x) and v(x) be as above. Then the
polynomial w(x) = u(x)ṽ(x) has the following properties:

(i) w 6= ±F and w 6= ± eF .

(ii) w ew = F eF .

(iii) w(1)2 = F (1)2.

(iv) kwk = kFk.
(v) If F is a 0, 1-polynomial, then w is also and with the

same number of non-zero terms as F .



(Maple Time)

The list ends with f7(x).

Why is xn + f7(x) irreducible for all n � 36 ?

Two Steps:

1. Handle reciprocal factors (there are none).

2. Handle non-reciprocal factors (there is only one).

(Maple Time)

The list ends with f7(x).

Why is xn + f7(x) irreducible for all n � 36 ?

Two Steps:

1. Handle reciprocal factors (there are none).

2. Handle non-reciprocal factors (there is only one).

(Maple Time)

The list ends with f7(x).

Why is xn + f7(x) irreducible for all n � 36 ?

Two Steps:

1. Handle reciprocal factors (there are none).

2. Handle non-reciprocal factors (there is only one).

(Maple Time)

The list ends with f7(x).

Why is xn + f7(x) irreducible for all n � 36 ?

Two Steps:

1. Handle reciprocal factors (there are none).

2. Handle non-reciprocal factors (there is only one).

(Maple Time)

The list ends with f7(x).

Why is xn + f7(x) irreducible for all n � 36 ?

Two Steps:

1. Handle reciprocal factors (there are none).

2. Handle non-reciprocal factors (there is only one).



Examples of questions we would like to answer:

1. How does

f(x) = 1 + x211 + x517 + x575 + x1245 + x1398

factor in Z[x]?

2. Let f0(x) = 1. For k � 1, define fk(x) to be the reducible
polynomial of the form fk�1(x)+xn with n as small as possible
and n > deg fk�1.

1

1 + x3

1 + x3 + x15

1 + x3 + x15 + x16

1 + x3 + x15 + x16 + x32

1 + x3 + x15 + x16 + x32 + x33

1 + x3 + x15 + x16 + x32 + x33 + x34

1 + x3 + x15 + x16 + x32 + x33 + x34 + x35

Is the sequence {fk(x)} an infinite sequence?

Lemma 1. If the non-reciprocal part of a polynomial F (x) 2
Z[x] is reducible, then there exist non-reciprocal polynomials
u(x) and v(x) in Z[x] such that F (x) = u(x)v(x).

Comment. If F (x) has a positive leading coe�cient, then we
may suppose u(x) and v(x) have positive leading coe�cients.

Lemma 2. Suppose the non-reciprocal part of F (x) 2 Z[x]
is reducible, and let u(x) and v(x) be as above. Then the
polynomial w(x) = u(x)ṽ(x) has the following properties:

(i) w 6= ±F and w 6= ± eF .

(ii) w ew = F eF .

(iii) w(1)2 = F (1)2.

(iv) kwk = kFk.
(v) If F is a 0, 1-polynomial, then w is also and with the

same number of non-zero terms as F .

(Maple Time)


