Comment: Your course grade before the
final exam is in red on your test. Your
course grade cannot be lower than what
is indicated there if you do or don’t take
the final exam prv1ded you show up to

the last two weeks of classes. For emer-

gc 1tUa1on', yu‘aAyl also get permis-
sion from your instructor to miss a class
during these last two weeks.

Test Grades: 100
100
100
98
98
95
95
93
93
92
90
78
59
57
40



Theorem 2.1.1. (The Schonemann-Eisenstein Criterion)
Let f(x) = >, a;x’ € 7Z[x] where n is a positive integer.
Suppose there erists a prime p such that p { a,, p|a; for
all 3 < n, and p*t ag. Then f(x) is irreducible over Q.

Examples.

Theorem 2.1.1 —> 2z% 4 6x* + 6 is irreducible over Q
(but not over 7Z)

Theorem 2.1.1 — 3x% + 142 + 10 is irrreducible over Z



Theorem 2.1.1. (The Schonemann-Eisenstein Criterion)
Let f(x) = >, a;x’ € 7Z[x] where n is a positive integer.
Suppose there erists a prime p such that p { a,, p|a; for
all 3 < n, and p*t ag. Then f(x) is irreducible over Q.

Examples.

Theorem 2.1.1 —> 2z% 4 6x* + 6 is irreducible over Q
(but not over 7Z)

Theorem 2.1.1 — 3x% + 142 + 10 is irrreducible over Z

Theorem 2.1.1 —> x* + = + 1 is irreducible over Q



Theorem 2.1.1. (The Schonemann-Eisenstein Criterion)
Let f(x) = >, a;x’ € 7Z[x] where n is a positive integer.
Suppose there erists a prime p such that p { a,, p|a; for
all 3 < n, and p*t ag. Then f(x) is irreducible over Q.

A polynomial f(z) = > 7,

form (with respect to the prime p) if there is a prime p
such that p { a,, p|a; for j < n, and p? 1t a,.

a;x’ € Z|x| is in Fisenstein

An FEisenstein polynomial is an f(x) € Z|x]| for which
there is an integer a and a prime p such that f(x+a) is in
Eisenstein form with respect to the prime p. In this case,
we say f(x) is Fisenstein with respect to the prime p.



A polynomial f(xz) = > 7, a;x! € Z[z] is in Eisenstein

form (with respect to the prime p) if there is a prime p
such that p { a,, p|a; for j < n, and p? 1t a,.

An FEisenstein polynomial is an f(x) € Z|x]| for which
there is an integer a and a prime p such that f(x+a) is in
Eisenstein form with respect to the prime p. In this case,
we say f(x) is Fisenstein with respect to the prime p.

Examples.

x? 4+ x + 1 is Eisenstein with respect to the prime 3

b 4 2x° 4+ 22 + 9 is an Eisenstein polynomial

(x+3)°+2(x+3)°+2(x+3)+9
— 2% 4+ 20x° + 165x* + 72023 + 175522 + 2270x + 1230

How do we know if a given polynomial is Eisenstein?



Background

The resultant of f(x) and g(x), denoted R(f,g), can be
defined in terms of an (n+1r) X (n+r) determinant called
the Sylvester determinant of f(x) and g(x).
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f(z) =) a;@’ € Cla], g(z) =) bja’ € Clal
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Example.
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f(x) =x*+5x*+2x —1 and g(x) = 3z° + 10x + 2



a, Qp_1 Qp_o apb 0 O 0

O a, a,_1 a; ag 0 0

0 0 an, as a; Qg 0 SURAL
R(F9) =14 by by oo by 0 0 ... 03

O b, b, by by O 0

0 0 b by by by ... 0 [ ¢

Example.

f(x) =x*+ 52 +2x —1 and g(x) = 3z° + 10x + 2

15 2 —1 0
01 5 2 —1
R(f,g)=1310 2 0 0
03 10 2 0
00 3 10 2




a, Qp_1 Qp_o apb 0 O 0

O a, a,_1 a; ag 0 0

0 0 an, as a; Qg 0 SURAL
R(F9) =14 by by oo by 0 0 ... 03

O b, b, by by O 0
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Example.

f(x) =x*+ 52 +2x —1 and g(x) = 3z° + 10x + 2

15 2 —1 0 1 5 2 —1 0
015 2 -1/ 01 5 2 -1
R(f,g)=1310 2 0 0|=1]0 =5 —4 3 0
0310 2 0 0 0 —5 —4 3
00 3 10 2 0 0 3 10 2
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19(—42+413+10)
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R(f,g) = |3 10 2

0

—5 —4 3

—5 —4 3
0

2

10

21(—38)—13(—19)+(—5)(—38)

—9

21 13

—5 —4 3

10

19(—42+13+10) = —19°



Lemma 2.2.1. Let f(x) and g(x) € Clx], and suppose
that there is an o such that f(a) = g(a) = 0. Then
R(.fa g) = 0.

A, Qnp_1 Q9 ap 0 O . 0]

O a, a,_q a; ag 0O . 0

0 0 an, as; ai Qg . 0 T TOWS

R(5:9) =14 b, b, bo 0 0 ... 0|°
0O b, b, . by by O . 0
0 0 b by by by ... 0 [ O




Lemma 2.2.1. Let f(x) and g(x) € Clx], and suppose
that there is an o such that f(a) = g(a) = 0. Then

R(.fag) = 0.
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Lemma 2.2.1. Let f(x) and g(x) € Clx], and suppose
that there is an o such that f(a) = g(a) = 0. Then

R(.fag) = 0.

A, Qnp_1 Q9 ap 0 O 0"
O a, a,_q a; ag 0O 0
0 0 a, as a1 Ao 0 T TOWS
R _ : : : c. ¢ : : e b
59 = 1p by by oo by 0 0 ... 07
O b, b,_4 by by O 0 | 1 rows
0 0 - b, by bg 0
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Claim. Given f(x) and g(x) in Zl|x], there exist u(x)
and v(x) in Zlx] with degu < degg and degv < deg f
satisfying

f(z)u(z) + g(x)v(z) = R(f,9)-

a, Q,_-1 Qnp—2 ... ag 0 0 ... 0
O a, a,_ ap ag 0 0
0 0 a, as ap Qg 0 T TOWS
R _|E : P )
(f, g) br br—l br—2 bO O O 0| )
0O b b4 bi by O 0
s T TOWS
0O O b, b b1 by 0
CEn—l—r—l n+r—3 1‘1



Claim. Given f(x) and g(x) in Z|x], there exist u(x)

and v(x) in Z|lx] with degu < degg and degv < deg f
satisfying

() f(x)u(z) + g(z)v(z) = R(f, 9g)

w(x) = u(x)g(x)+v(x)h(x), w(x) monic, degw minimal

u(z) € Flz|, v(z)€ Flz]

Is |R(f,g)| the minimal positive integer for which (%) holds?

No



Claim. Given f(x) and g(x) in Z|x], there exist u(x)
and v(x) in Z|lx] with degu < degg and degv < deg f
satisfying

() f(x)u(z) + g(z)v(z) = R(f, 9g)

Lemma 2.2.2. Let f(x) and g(x) be two mon-constant
polynomaals in the field F' where FF = Q or F = F,. If
R(f,g) =0 in F, then f(x) and g(x) have an irreducible
factor in common in F|x|. If further degg < deg f, then
f(x) is reducible over F.

Lemma 2.2.1. Let f(x) and g(x) € Cl|x], and suppose
that there is an o such that f(a) = g(a) = 0. Then

R(.fag) = 0.



Claim. Given f(x) and g(x) in Z|x], there exist u(x)
and v(x) in Z|x] with degu < degg and degv < deg f
satisfying

() f(x)u(z) + g(z)v(z) = R(f,g).
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Claim. Given f(x) and g(x) in Z|x], there exist u(x)
and v(x) in Z|x] with degu < degg and degv < deg f
satisfying

() f(z)u(x) + g(z)v(z) = R(f,9).
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Claim. Given f(x) and g(x) in Z|x], there exist u(x)
and v(x) in Z|lx] with degu < degg and degv < deg f
satisfying

() f(x)u(z) + g(z)v(z) = R(f, 9g)
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that there is an o such that f(a) = g(a) = 0. Then

R(.fag) = 0.



Background

f(z) =) a;@’ € Cla], g(z) =) bja’ € Clal

R(.fag) —

r>1, ap,b. #0
Apn—-1 An—2 agp 0O O
aAn-—1 ai; Qo 0
an as aji Qo
b2 ... bp 0 O
b1 ... by by O
b, . by by

o O

-

/G

> T TOWS

, 17 TOWS




a, Qnp_1 Q9 ap 0 O 0"
0O a, a,_1 a; ag 0O 0
0 0 an, as ai1 Qg 0 T TOWs
R _ : : . 2 : ;
59 =1p by by ... by 0 O ol
0O b. b,y . by by O 0
\ 7 TOWS
0O O b, . by b1 by 0
: /
Comment: If ay,...,a, are the roots of f(x), then

R(f,g) = a, g(ai) -+ g(an)-



f@) =) a’ €Clal, g(2) =) bja’ € Clal

n>1, r>1, a,b.#0

Comment: If ay,...,a, are the roots of f(x), then

R(f,g) = a, g(ai) -+ - g(an)-

Lemma 2.2.1. Let f(x) and g(x) € Clx], and suppose
that there is an o such that f(a) = g(a) = 0. Then

R(fvg) = 0.



f@) =) a’ €Clal, g(2) =) bja’ € Clal

n>1, r>1, a,b.#0

Comment: If ay,...,a, are the roots of f(x), then

R(f,g) = a, g(ai) -+ - g(an)-

Lemma 2.2.1. Let f(x) and g(x) be two mon-constant
polynomaals in the field F' where FF = Q or F = F,. If
R(f,g) =0 in F, then f(x) and g(x) have an irreducible
factor in common in F|x]|. If further degg < deg f, then
f(x) is reducible over F.



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.

A polynomial f(z) = > 7, a;x! € Z[z] is in Eisenstein
form (with respect to the prime p) if there is a prime p
such that p { a,, p|a; for j < n, and p? 1t a,.

An FEisenstein polynomial is an f(x) € Z|x] for which
there is an integer a and a prime p such that f(x+a) is in
Eisenstein form with respect to the prime p. In this case,
we say f(x) is Fisenstein with respect to the prime p.



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.

Steps:
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e Calculate R(f, f').



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.
Steps:

e Calculate R(f, f').

— If R(f, f’') = 0, then f(x) is not Eisenstein with
respect to any prime.

Lemma 2.2.1. Let f(x) and g(x) be two mon-constant
polynomaals in the field F' where FF = Q or F = F,. If
R(f,g) =0 in F, then f(x) and g(x) have an irreducible

factor in common in F|x]|. If further degg < deg f, then
f(x) s reducible over F'.




Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.
Steps:

e Calculate R(f, f').

— If R(f, f') = 0, then f(x) is not Eisenstein with
respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
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respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
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» For each prime p dividing R(f, f') and each
a € {0,1,...,p — 1}, check if f(x 4+ a) is in
Eisenstein form with respect p.
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whether f(x) is an Eisenstein polynomial.
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respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
» Factor R(f, f’).

» For each prime p dividing R(f, f') and each
a € {0,1,...,p — 1}, check if f(x 4+ a) is in
Eisenstein form with respect p.

> If it is for some such p, then f(x) is an
Eisenstein polyomial (with respect to p).



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.

Steps:
e Calculate R(f, f').

— If R(f, f') = 0, then f(x) is not Eisenstein with
respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
» Factor R(f, f’).

» For each prime p dividing R(f, f') and each
a € {0,1,...,p — 1}, check if f(x 4+ a) is in
Eisenstein form with respect p.

> If it is for some such p, then f(x) is an
Eisenstein polyomial (with respect to p).

> If it is not for every such p, then f(x) is
not an Eisenstein polynomial.



Comment: If for some integer a we have that f(x + a)
is in Eisenstein form with respect to the prime p, then

f(z) = an(xz — a)” (mod p).

Idea for most of Algorithm. Show that if there is a prime
p such that

f(z) = g(x)°h(x) (mod p), where degg > 1,
then p|R(f, f').

Is the matrix below nonsingular?

119 532 289
873 112 567
222 633 650



a, Q.1 Qp_2 ap 0 O 0| )
0 a, Qanp-—1 a; ag 0O 0
0 0 an, as a1 Qg 0 T TOWS
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O b, b._4 . by bg O 0
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0 0 b, . b by by 0
: /
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Idea for most of Algorithm. Show that if there is a prime
p such that

f(z) = g(x)°h(x) (mod p), where degg > 1,
then p|R(f, f').



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.

Steps:
e Calculate R(f, f').

— If R(f, f') = 0, then f(x) is not Eisenstein with
respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
» Factor R(f, f’).

» For each prime p dividing R(f, f') and each
a € {0,1,...,p — 1}, check if f(x 4+ a) is in
Eisenstein form with respect p.

> If it is for some such p, then f(x) is an
Eisenstein polyomial (with respect to p).

> If it is not for every such p, then f(x) is
not an Eisenstein polynomial.



Comment: If for some integer a we have that f(x + a)
is in Eisenstein form with respect to the prime p, then

f(z) = an(xz — a)” (mod p).

Idea for most of Algorithm. Show that if there is a prime
p such that

f(z) = g(x)°h(x) (mod p), where degg > 1,
then p|R(f, f')-

Idea for last part of Algorithm. If b € Z satisfies f(x + b)
is in Eisenstein form with respect to some prime p, then

f(x + a) is also for all a = b (mod p).

n
f(x +b) = Z a;.a:j Eisenstein form with respect to p
j=0



Comment: If for some integer a we have that f(x + a)
is in Eisenstein form with respect to the prime p, then

f(z) = an(xz — a)” (mod p).

Idea for most of Algorithm. Show that if there is a prime
p such that

f(z) = g(x)°h(x) (mod p), where degg > 1,
then p|R(f, f')-

Idea for last part of Algorithm. If b € Z satisfies f(x + b)
is in Eisenstein form with respect to some prime p, then

f(x + a) is also for all a = b (mod p).

n
f(x +b) = Z a;.a:j Eisenstein form with respect to p
j=0

—> f(kp +b) = kpa!, + a = a] (mod p°)



Algorithm: Given f(x) € Z|[x] of degree n > 2, determine
whether f(x) is an Eisenstein polynomial.

Steps:
e Calculate R(f, f').

— If R(f, f') = 0, then f(x) is not Eisenstein with
respect to any prime.

— If R(f, f’') # 0, then proceed as follows.
» Factor R(f, f’).

» For each prime p dividing R(f, f') and each
a € {0,1,...,p — 1}, check if f(x 4+ a) is in
Eisenstein form with respect p.

> If it is for some such p, then f(x) is an
Eisenstein polyomial (with respect to p).

> If it is not for every such p, then f(x) is
not an Eisenstein polynomial.



Example.

f(x) =x*+ 52 +2x —1 and g(x) = 3z° + 10x + 2

15 2 -1 0 1 5 2 -1 0
01 5 2 -1 01 5 2 -1
R(f,g)=310 2 0 0|=|0-5 —4 3 0
0 3 10 2 O 0 0 —5 —4 3
0 0 3 10 2 0 0 3 10 2
1 5 2 -1 1 5 2 -1
|- -4 3 0| |0 21 13 -5
|0 -5 —4 3| |0 -5 —4 3
0 3 10 2 0 3 10 2
21 13 -5
=|—5 —4 3 |=21(—38)—13(—19)+(—5)(—38)
3 10 2

= 19(—42+13+10) = —19°




Example.

f(x) =x*+ 52 +2x —1 and g(x) = 3z° + 10x + 2

]

> f 1= x => x"3 + 5*x72 + 2*x - 1;
fi=x—>r+5x%+2x— 1
> sort (expand(f(x+11)));
X 4 38 x° 4+ 475 x + 1957
> ifactor(475); ifactor(1957);
(5)° (19)
(19) (103)

'=

Note: The prime p = 19 is the only p that can *“work”.
From f(x) = (x —11)° (mod 19) and unique factorization
in Fig|x|, we get 11 is the only a that can “work”.



