The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0 \pmod{n}$.

Preliminaries: Let n be a large positive integer, and let b be an integer ≥ 3 smaller than n. Suppose we write n in base b, so

$$n = c_db^d + c_{d-1}b^{d-1} + \cdots + c_1b + c_0,$$

for some positive integer d and each $c_j \in \{0, 1, \ldots, b - 1\}$. Set $f(x) = \sum_{j=0}^{d} c_j x^j$. Then one of the following holds:

(i) The polynomial $f(x)$ is irreducible over $\mathbb{Q}[x]$.

(ii) The polynomial $f(x) = g(x)h(x)$ for $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$, and $n = g(b)h(b)$ is a non-trivial factorization of n.

Comment: We can use $f(x)$ above and $m = b = \lfloor n^{1/d} \rfloor$.
Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0 \pmod{n}$. The mapping $\phi : \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_n$ with $\phi(g(\alpha)) = g(m) \pmod{n}$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\alpha]$ is.)
The Number Field Sieve

Let \(f \) be an irreducible monic polynomial in \(\mathbb{Z}[x] \). Let \(\alpha \) be a root of \(f \). Let \(m \) be an integer for which \(f(m) \equiv 0 \pmod{n} \). The mapping \(\phi : \mathbb{Z}[\alpha] \to \mathbb{Z}_n \) with \(\phi(g(\alpha)) = g(m) \pmod{n} \) for all \(g(x) \in \mathbb{Z}[x] \) is a homomorphism. (Recall what \(\mathbb{Z}[\alpha] \) is.) The idea is to find a set \(S \) of polynomials \(g(x) \in \mathbb{Z}[x] \) such that both of the following hold:

(i) \(\prod_{g \in S} g(m) = y^2 \) for some \(y \in \mathbb{Z} \)

(ii) \(\prod_{g \in S} g(\alpha) = \beta^2 \) for some \(\beta \in \mathbb{Z}[\alpha] \).

Taking \(x = \phi(\beta) \), we deduce

\[
x^2 \equiv \phi(\beta)^2 \equiv \phi(\beta^2) \equiv \phi \left(\prod_{g \in S} g(\alpha) \right) \equiv \prod_{g \in S} g(m) \equiv y^2 \pmod{n}.
\]

Thus, we can hope to factor \(n \) by computing \(\gcd(x + y, n) \).
The Number Field Sieve

The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:

(i) $\prod_{g \in S} g(m) = y^2$ for some $y \in \mathbb{Z}$

(ii) $\prod_{g \in S} g(\alpha) = \beta^2$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x = \phi(\beta)$, we deduce

$$x^2 \equiv \phi(\beta)^2 \equiv \phi(\beta^2) \equiv \phi \left(\prod_{g \in S} g(\alpha) \right) \equiv \prod_{g \in S} g(m) \equiv y^2 \pmod{n}.$$

What do we choose for the $g(x)$?

Take $g(x)$ of the form $a - bx$ where $|a| \leq D$ and $0 < b \leq D$.

What do we choose for the $g(x)$?

Take $g(x)$ of the form $a - bx$ where $|a| \leq D$ and $0 < b \leq D$.

We want $g(m)$ to have only small prime factors. This is done by first choosing b and then, with b fixed, letting a vary and sieving to determine the a for which $g(m)$ has only small prime factors.

$$(i) \prod_{g \in S} g(m) = y^2 \text{ for some } y \in \mathbb{Z}$$

$$(ii) \prod_{g \in S} g(\alpha) = \beta^2 \text{ for some } \beta \in \mathbb{Z}[\alpha].$$

How do we obtain the desired square in $\mathbb{Z}[\alpha]$?
What do we choose for the $g(x)$?

Take $g(x)$ of the form $a - bx$ where $|a| \leq D$ and $0 < b \leq D$.

We want $g(m)$ to have only small prime factors. This is done by first choosing b and then, with b fixed, letting a vary and sieving to determine the a for which $g(m)$ has only small prime factors.

How do we obtain the desired square in $\mathbb{Z}[\alpha]$?

Let $\alpha_1, \ldots, \alpha_d$ be the distinct roots of $f(x)$ with $\alpha = \alpha_1$. We consider the norm map $N(g(\alpha)) = g(\alpha_1) \cdots g(\alpha_d)$, where $g(x) \in \mathbb{Z}[x]$. It has the two properties:

- If $g(x)$ and $h(x)$ are in $\mathbb{Z}[x]$, then
 \[N(g(\alpha)h(\alpha)) = N(g(\alpha))N(h(\alpha)). \]

- If $g(x) \in \mathbb{Z}[x]$, then $N(g(\alpha)) \in \mathbb{Z}$.
How do we obtain the desired square in \(\mathbb{Z}[\alpha] \)?

Let \(\alpha_1, \ldots, \alpha_d \) be the distinct roots of \(f(x) \) with \(\alpha = \alpha_1 \). We consider the norm map \(N(g(\alpha)) = g(\alpha_1) \cdots g(\alpha_d) \), where \(g(x) \in \mathbb{Z}[x] \). It has the two properties:

- If \(g(x) \) and \(h(x) \) are in \(\mathbb{Z}[x] \), then
 \[
 N(g(\alpha) h(\alpha)) = N(g(\alpha)) N(h(\alpha)).
 \]
- If \(g(x) \in \mathbb{Z}[x] \), then \(N(g(\alpha)) \in \mathbb{Z} \).

Observe that the norm of a square in \(\mathbb{Z}[\alpha] \) is a square in \(\mathbb{Z} \). On the other hand,

\[
N(a - b\alpha) = b^d \prod_{j=1}^{d} \left(\frac{a_j}{b} - \alpha_j \right) = b^d f(a/b)
\]

\[
= a^d + c_{d-1}a^{d-1}b + \cdots + c_1ab^{d-1} + c_0b^d.
\]

As we force the product \(\pi S \) to be a square.
How do we obtain the desired square in \(\mathbb{Z}[\alpha] \)?

Observe that the norm of a square in \(\mathbb{Z}[\alpha] \) is a square in \(\mathbb{Z} \). On the other hand,

\[
N(a - b\alpha) = b^d \prod_{j=1}^{d} \left(\frac{a}{b} - \alpha_j \right) = b^d f(a/b)
\]

\[
= a^d + c_{d-1} a^{d-1} b + \cdots + c_1 a b^{d-1} + c_0 b^d.
\]

The idea is to try to obtain a set \(S \) of pairs \((a, b)\) as above. As we force the product \(\prod (a - bm) \) to be a square (products over \((a, b) \in S\)), we also force \(\prod (a^d + c_{d-1} a^{d-1} b + \cdots + c_0 b^d) \) to be a square.

This can be done by working with a matrix of exponents, in the prime factorizations of the above, modulo 2 similar to what is done in Dixon’s algorithm.
The Number Field Sieve

Let f be an irreducible monic polynomial in $\mathbb{Z}[x]$. Let α be a root of f. Let m be an integer for which $f(m) \equiv 0 \pmod{n}$. The mapping $\phi : \mathbb{Z}[\alpha] \rightarrow \mathbb{Z}_n$ with $\phi(g(\alpha)) = g(m) \pmod{n}$ for all $g(x) \in \mathbb{Z}[x]$ is a homomorphism. (Recall what $\mathbb{Z}[\alpha]$ is.) The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:

(i) $\prod_{g \in S} g(m) = y^2$ for some $y \in \mathbb{Z}$

(ii) $\prod_{g \in S} g(\alpha) = \beta^2$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x = \phi(\beta)$, we deduce

$$x^2 \equiv \phi(\beta)^2 \equiv \phi(\beta^2) \equiv \phi\left(\prod_{g \in S} g(\alpha)\right) \equiv \prod_{g \in S} g(m) \equiv y^2 \pmod{n}.$$

Thus, we can hope to factor n by computing $\text{gcd}(x + y, n)$.

Comment 2: What does this mean if b is a prime?
The Number Field Sieve

The idea is to find a set S of polynomials $g(x) \in \mathbb{Z}[x]$ such that both of the following hold:

(i) $\prod_{g \in S} g(m) = y^2$ for some $y \in \mathbb{Z}$

(ii) $\prod_{g \in S} g(\alpha) = \beta^2$ for some $\beta \in \mathbb{Z}[\alpha]$.

Taking $x = \phi(\beta)$, we deduce

$$x^2 \equiv \phi(\beta)^2 \equiv \phi(\beta^2) \equiv \phi \left(\prod_{g \in S} g(\alpha) \right) \equiv \prod_{g \in S} g(m) \equiv y^2 \pmod{n}.$$

Note that we have obtained $\prod_{g \in S} g(\alpha)$ having a square norm.

Sadly, this does not mean that it is a square in $\mathbb{Z}[\alpha]$. But it is a start. How do we finish up?
The Number Field Sieve

Comment 1: The running time for the number field sieve is \(\exp \left(c (\log n)^{1/3} (\log \log n)^{2/3} \right) \) where \(c = 4/(3^{2/3}) \) will do.

Comment 2: In 1993, Lenstra, Lenstra, Manasse, and Pollard used the number field sieve to factor \(F_9 = 2^{2^9} + 1 \).
Public-Key Encryption

Problem: How do you communicate with someone you have never met before through the personals without anyone else understanding the private material you are sharing with this stranger.

Initial Idea: Take advantage of something you know that no one else knows. Find two large primes p and q. Compute $n = pq$. If you are secretive about your choices for p and q and they are large enough, then you can tell the world what n is and you will know something no one else in the world knows, namely how n factors. You also know what $(n) = (p^{-1})q$ is.
Public-Key Encryption

Problem: How do you communicate with someone you have never met before through the personals without anyone else understanding the private material you are sharing with this stranger.

Initial Idea: Take advantage of something you know that no one else knows. Find two large primes p and q. Compute $n = pq$. If you are secretive about your choices for p and q and they are large enough, then you can tell the world what n is and you will know something no one else in the world knows, namely how n factors.
Public-Key Encryption

Problem: How do you communicate with someone you have never met before through the personals without anyone else understanding the private material you are sharing with this stranger.

Initial Idea: Take advantage of something you know that no one else knows. Find two large primes p and q. Compute $n = pq$. If you are secretive about your choices for p and q and they are large enough, then you can tell the world what n is and you will know something no one else in the world knows, namely how n factors. You also know what $\phi(n) = (p - 1)(q - 1)$ is.
The Rest:

- Choose \(s \in \mathbb{Z}^+ \) (the “encrypting exponent”) with \(\text{gcd}(s, \phi(n)) = 1 \).

- Publish \(n \) and \(s \) in the personals.

- Tell them that to form a message \(M \), concatenate the symbols 00 for blank, 01 for a, 02 for b, ..., 26 for z, 27 for a comma, 28 for a period, and whatever else you might want.

Example. \(M = 0805121215 \)
The Rest:

- Choose $s \in \mathbb{Z}^+$ (the “encrypting exponent”) with \(\gcd(s, \phi(n)) = 1 \).

- Publish n and s in the personals.

- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for b, ..., 26 for z, 27 for a comma, 28 for a period, and whatever else you might want.

- Tell the person to publish (back in the personals) the value of $E = M^s \mod n$. (The person should be told to make sure that $M^s > n$ by adding extra blanks if necessary and that $M < n$ by breaking up a message into two or more messages if necessary.)
The Rest:

- Choose $s \in \mathbb{Z}^+$ (the “encrypting exponent”) with $\gcd(s, \phi(n)) = 1$.

- Publish n and s in the personals.

- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for b, ..., 26 for z, 27 for a comma, 28 for a period, and whatever else you might want.

- Tell the person to publish (back in the personals) the value of $E = M^s \mod n$. (The person should be told to make sure that $M^s > n$ by adding extra blanks if necessary and that $M < n$ by breaking up a message into two or more messages if necessary.)
The Rest:

- Choose $s \in \mathbb{Z}^+$ (the “encrypting exponent”) with $\gcd(s, \phi(n)) = 1$.
- Publish n and s in the personals.
- Tell them that to form a message M, concatenate the symbols 00 for blank, 01 for a, 02 for b, ..., 26 for z, 27 for a comma, 28 for a period, and whatever else you might want.
- Tell the person to publish (back in the personals) the value of $E = M^s$ and the modulus n.

What can you do with the encoded message E?

An outsider can’t compute $\phi(n)$, and you expect me to compute $\phi(\phi(n))$? mod n?

Calculate t with $st \equiv 1 \pmod{\phi(n)}$ (one can use $t \equiv s^{\phi(\phi(n))^{-1}} \pmod{\phi(n)}$). Then compute $E^t \mod n$. This will be the same as M modulo n (unless p or q divides M, which isn’t likely).
Certified signatures

Basic Set-Up. Imagine person A has published n and s in the personals, person B is corresponding with person A in the personals, and person C gets jealous. C decides to send A a message in the personals that reads something like, “Dear A, I think you are a jerk. Your dear friend, B.” This of course would make A very upset with B and would make C very happy. What would be nice is if there were a way for B to sign his messages so that A can see the signature and know whether a message supposedly from B is really from B.
Certified signatures

• B has his very own n and s which he has shared with at least A. Call them n' and s', and let the corresponding t be t'.

• B informs A of some signature S that B will use.

• At the end of B’s encrypted message E, he gives A the number $T = S^{t'} \mod n'$. This is part of E.

• After A decodes the message, he computes $T^{s'} \mod n'$ (remember n' and s' are public). The result will be S.

Comment: Since only B knows t', only B can determine T, and A will know that the message really came from B.
Factoring Polynomials

Notation. Let p be a prime, and let $f(x) \in \mathbb{Z}[x]$ with $f(x) \not\equiv 0 \pmod{p}$. We say

$$u(x) \equiv v(x) \pmod{p, f(x)}$$

where $u(x)$ and $v(x)$ are in $\mathbb{Z}[x]$, if there exist $g(x)$ and $h(x)$ in $\mathbb{Z}[x]$ such that $u(x) = v(x) + f(x)g(x) + ph(x)$.

Properties:

- If

$$u(x) \equiv v(x) \pmod{p, f(x)} \text{ and } v(x) \equiv w(x) \pmod{p, f(x)},$$

then $u(x) \equiv w(x) \pmod{p, f(x)}$.
Properties:

- If
 \[u(x) \equiv v(x) \pmod{p, f(x)} \quad \text{and} \quad v(x) \equiv w(x) \pmod{p, f(x)}, \]
 then \(u(x) \equiv w(x) \pmod{p, f(x)} \).

- If
 \[u_1(x) \equiv v_1(x) \pmod{p, f(x)} \quad \text{and} \quad u_2(x) \equiv v_2(x) \pmod{p, f(x)}, \]
 then \(u_1(x) \pm u_2(x) \equiv v_1(x) \pm v_2(x) \pmod{p, f(x)} \).

- If
 \[u_1(x) \equiv v_1(x) \pmod{p, f(x)} \quad \text{and} \quad u_2(x) \equiv v_2(x) \pmod{p, f(x)}, \]
 then \(u_1(x)u_2(x) \equiv v_1(x)v_2(x) \pmod{p, f(x)} \).

- If \(u(x) \equiv v(x) \pmod{p} \) or \(u(x) \equiv v(x) \pmod{f(x)} \),
 then \(u(x) \equiv v(x) \pmod{p, f(x)} \).
Properties:

- If
 \[u(x) \equiv v(x) \pmod{(p, f(x))} \quad \text{and} \quad v(x) \equiv w(x) \pmod{(p, f(x))}, \]
 then \[u(x) \equiv w(x) \pmod{(p, f(x))}. \]

- If
 \[u_1(x) \equiv v_1(x) \pmod{(p, f(x))} \quad \text{and} \quad u_2(x) \equiv v_2(x) \pmod{(p, f(x))}, \]
 then \[u_1(x) \pm u_2(x) \equiv v_1(x) \pm v_2(x) \pmod{(p, f(x))}. \]

- If
 \[u_1(x) \equiv v_1(x) \pmod{(p, f(x))} \quad \text{and} \quad u_2(x) \equiv v_2(x) \pmod{(p, f(x))}, \]
 then \[u_1(x)u_2(x) \equiv v_1(x)v_2(x) \pmod{(p, f(x))}. \]

- If \[u(x) \equiv v(x) \pmod{p} \quad \text{or} \quad u(x) \equiv v(x) \pmod{f(x)}, \]
 then \[u(x) \equiv v(x) \pmod{(p, f(x))}. \]
Properties:

- If \(u(x) \equiv v(x) \pmod{p, f(x)} \) and \(v(x) \equiv w(x) \pmod{p, f(x)} \),
 then \(u(x) \equiv w(x) \pmod{p, f(x)} \).
- If \(u_1(x) \equiv v_1(x) \pmod{p, f(x)} \) and \(u_2(x) \equiv v_2(x) \pmod{p, f(x)} \),
 then \(u_1(x) \pm u_2(x) \equiv v_1(x) \pm v_2(x) \pmod{p, f(x)} \).
- If \(u_1(x) \equiv v_1(x) \pmod{p, f(x)} \) and \(u_2(x) \equiv v_2(x) \pmod{p, f(x)} \),
 then \(u_1(x)u_2(x) \equiv v_1(x)v_2(x) \pmod{p, f(x)} \).
- If \(u(x) \equiv v(x) \pmod{p} \) or \(u(x) \equiv v(x) \pmod{f(x)} \),
 then \(u(x) \equiv v(x) \pmod{p, f(x)} \).
- We have \(u(x) \equiv 0 \pmod{p, f(x)} \) if and only if \(f(x) \) is a factor of \(u(x) \) modulo \(p \).