
Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x.

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.

Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x.

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.

Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x.

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.

Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x.

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.

Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x.

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.

Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.

Expectation 2. “Most” numbers n have a prime factor >
p

n.

X

px

1

p
= log log x + A + O(1/ log x)

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 2?

X

nx

X

p
x<px

p|n

1 =
X

p
x<px

X

nx

p|n

1 � (log 2)x + O

✓
x

log x

◆

log 2 = 0.69314718 . . .

Expectation 2. “Most” numbers n have a prime factor >
p

n.

X

px

1

p
= log log x + A + O(1/ log x)

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 2?

X

nx

X

p
x<px

p|n

1 =
X

p
x<px

X

nx

p|n

1 � (log 2)x + O

✓
x

log x

◆

log 2 = 0.69314718 . . .

Expectation 2. “Most” numbers n have a prime factor >
p

n.

X

px

1

p
= log log x + A + O(1/ log x)

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 2?

X

nx

X

p
x<px

p|n

1 =
X

p
x<px

X

nx

p|n

1 � (log 2)x + O

✓
x

log x

◆

log 2 = 0.69314718 . . .

Expectation 2. “Most” numbers n have a prime factor >
p

n.

X

px

1

p
= log log x + A + O(1/ log x)

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 2?

X

nx

X

p
x<px

p|n

1 =
X

p
x<px

X

nx

p|n

1 � (log 2)x + O

✓
x

log x

◆

log 2 = 0.69314718 . . .

Comment: A random number n will have small prime factors,
so it is reasonable to first do a quick “sieve” to determine if
this is the case.

How many integers n  x do not have a prime factor  z?

On the order of
x

log z
.

Comment: A random number n will have small prime factors,
so it is reasonable to first do a quick “sieve” to determine if
this is the case.

How many integers n  x do not have a prime factor  z?

On the order of
x

log z
.

Comment: A random number n will have small prime factors,
so it is reasonable to first do a quick “sieve” to determine if
this is the case.

How many integers n  x do not have a prime factor  z?

On the order of
x

log z
.

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Comment: In 1981, Brent and Pollard factored F8 = 228
+ 1

(containing 78 digits) using this method with f(x) = x
1024+1.

fsjflsdkj

Why f(x) = x
1024 + 1?

Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆


1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.

Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.

Comment: In 1981, Brent and Pollard factored F8 = 228
+ 1

(containing 78 digits) using this method with f(x) = x
1024+1.

fsjflsdkj

Why f(x) = x
1024 + 1?

smallest prime divisor 1238926361552897

Homework: (due October 25 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
.

Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea (Not Just For Dixon’s Algorithm)

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

Dixon’s Factoring Algorithm

Basic (Important) Idea.

• Suppose
n = p

e1
1 p

e2
2 · · · p

er

r

with pj “odd” distinct primes and ej 2 Z+.

• Then x
2 ⌘ 1 (mod p

ej

j
) has two solutions which implies

x
2 ⌘ 1 (mod n) has 2r solutions.

• If x and y are random and x
2 ⌘ y

2 (mod n), then with
probability (2r � 2)/2r we can factor n (nontrivially) by
considering gcd(x + y, n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

1. Randomly choose a number a >
p

n and compute
s(a) = a

2 mod n.

2. A bound B = B(n) is chosen (specified momentarily).
Determine if s(a) has a prime factor > B. We choose
a new a if it does. Otherwise, we obtain a complete
factorization of s(a).

3. Let p1, . . . , pt denote the primes  B. We continue
steps (1) and (2) until we obtain t + 1 di↵erent a’s, say
a1, . . . , at+1.

4. From the above, we have the factorizations

s(ai) = p
e(i,1)
1 p

e(i,2)
2 · · · p

e(i,t)
t

for i 2 {1, 2, . . . , t + 1}.

For i 2 {1, 2, . . . , t + 1}, compute the vectors

~vi = he(i, 1), e(i, 2), . . . , e(i, t)i mod 2.

These vectors are linearly dependent modulo 2. Use
Gaussian elimination (or something better) to find a
non-empty set S ✓ {1, 2, . . . , t + 1} such that

P
i2S

~vi ⌘
~0 (mod 2). Calculate x 2 [0, n � 1] \ Z (in an obvious
way) satisfying

Y

i2S

s(ai) ⌘ x
2 (mod n).

5. Calculate y =
Q

i2S
ai mod n. Then x

2 ⌘ y
2 (mod n).

Compute gcd(x + y, n). Hopefully, a nontrivial factor-
ization of n results.

Given n = 12371, describe precisely how to use Dixon’s Factor-

ing Algorithm and the following information to find a nontrivial

factor of n. You do not need to come up with a factor of n,

but use Dixon’s Factoring Algorithm to reduce coming up with

a factor of n to the computation of gcd(a, n) where you tell me

rather precisely what the value of a is (it should involve multi-

plication and addition of specific numbers). It is possible that

the a you choose will not produce a factorization of n; in the

algorithm one might need to try more than one value of a. You

need only give me one reasonable choice for a. Use the following

information where all congruences shown are modulo n:

116
2 ⌘ 5 ⇥ 7 ⇥ 31, 136

2 ⌘ 5
3 ⇥ 7

2
, 159

2 ⌘ 7
2 ⇥ 11,

170
2 ⌘ 2⇥3

3⇥7⇥11, 173
2 ⌘ 3⇥7⇥13⇥19, 184

2 ⌘ 2⇥3⇥7
2⇥31.

This test is good if and only if one can factor n � 1.

Problem from Old Comprehensive Exam

Given n = 12371, describe precisely how to use Dixon’s Factor-
ing Algorithm and the following information to find a nontrivial
factor of n. You do not need to come up with a factor of n,
but use Dixon’s Factoring Algorithm to reduce coming up with
a factor of n to the computation of gcd(a, n) where you tell me
rather precisely what the value of a is (it should involve multi-
plication and addition of specific numbers). It is possible that
the a you choose will not produce a factorization of n; in the
algorithm one might need to try more than one value of a. You
need only give me one reasonable choice for a. Use the following
information where all congruences shown are modulo n:

1162 ⌘ 5 ⇥ 7 ⇥ 31, 1362 ⌘ 53 ⇥ 72
, 1592 ⌘ 72 ⇥ 11,

1702 ⌘ 2⇥33⇥7⇥11, 1732 ⌘ 3⇥7⇥13⇥19, 1842 ⌘ 2⇥3⇥72⇥31.

This test is good if and only if one can factor n � 1.

Given n = 12371, describe precisely how to use Dixon’s Factor-

ing Algorithm and the following information to find a nontrivial

factor of n. You do not need to come up with a factor of n,

but use Dixon’s Factoring Algorithm to reduce coming up with

a factor of n to the computation of gcd(a, n) where you tell me

rather precisely what the value of a is (it should involve multi-

plication and addition of specific numbers). It is possible that

the a you choose will not produce a factorization of n; in the

algorithm one might need to try more than one value of a. You

need only give me one reasonable choice for a. Use the following

information where all congruences shown are modulo n:

116
2 ⌘ 5 ⇥ 7 ⇥ 31, 136

2 ⌘ 5
3 ⇥ 7

2
, 159

2 ⌘ 7
2 ⇥ 11,

170
2 ⌘ 2⇥3

3⇥7⇥11, 173
2 ⌘ 3⇥7⇥13⇥19, 184

2 ⌘ 2⇥3⇥7
2⇥31.

This test is good if and only if one can factor n � 1.

Small Example: n = 1189 and B = 11.

Small Example: n = 1189 and B = 11.

Homework: (Due Friday, March 21, by class)

Use Dixon’s Algorithm to factor n = 80099. Suppose B = 15
and the aj’s from the first three steps are the numbers 1392,
58360, 27258, 39429, 12556, 42032, and 1234. (Each of these
squared mod n should have all of its prime factors  B.)

Homework: (due October 25 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
.

Small Example: n = 1189 and B = 11.

Homework: (due October 25 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
.

Homework: (due October 25 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
.

Small Example: n = 1189 and B = 11.

Small Example: n = 1189 and B = 11.

Homework: (Due Friday, March 21, by class)

Use Dixon’s Algorithm to factor n = 80099. Suppose B = 15
and the aj’s from the first three steps are the numbers 1392,
58360, 27258, 39429, 12556, 42032, and 1234. (Each of these
squared mod n should have all of its prime factors  B.)

MAPLE EXAMPLE

smallest prime divisor 1238926361552897

Homework: (due October 26 by class time)
page 14, problem (1) about (1) on page 12
page 16 on Dixon’s Factoring Algorithm
New Problem below (not in Notes)

New Problem.

(a) Calculate accurate to 4 decimal places the value of

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
1/3}|

x
.

(b) Calculate accurate to 4 decimal places the value a 2 (0, 1)
such that

lim
x!1

|{n  x : 8 primes p dividing n, we have p  x
a}|

x
=

1

2
.

