
Part I.  Basic Arithmetic
Part II.  Primality Testing
Part III.  Factoring Integers



Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v is an integer > 1.

Note: One can be pretty confident about whether a large
integer n is composite without knowing a nontrivial factor-
ization.

Expectation. A random number n will have around log log n

prime factors.

Theorem. If !(n) is the number of distinct prime factors
of n, then

X

nx

�
!(n) � log log x

�2 ⌧ x log log x.

Corollary. For almost all n, we have

(⇤) |!(n) � log log n|  (log log n)2/3
.

Explanation of Corollary:

• Assume there are "x di↵erent n  x for which (⇤) does
not hold, where " > 0 is fixed and x is large.
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Expectation 2. “Most” numbers n have a prime factor >
p

n.

X

px

1

p
= log log x + A + O(1/ log x)

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 2?
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✓
x

log x
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Comment: A random number n will have small prime factors,
so it is reasonable to first do a quick “sieve” to determine if
this is the case.

How many integers n  x do not have a prime factor  z?

On the order of
x

log z
.

Comment: A random number n will have small prime factors,
so it is reasonable to first do a quick “sieve” to determine if
this is the case.

How many integers n  x do not have a prime factor  z?
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Comment: A random number n will have small prime factors,
so it is reasonable to first do a quick “sieve” to determine if
this is the case.
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Pollard’s p � 1 Factoring Algorithm

For k  min{107
, n � 1}, check if gcd(2k! � 1 mod n, n) > 1.

Idea: If n has some prime factor p that is not too large and
p � 1 has fairly small prime factors, then probably p � 1
divides some k! above and hence the gcd. Further, it is likely
that all primes dividing n will not simultaneously divide the
first occurrence of such a k.
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Pollard’s ⇢-Algorithm

This method typically finds a prime factor p of n in aboutp
p steps (so O(n1/4) steps), and small prime factors of n will

usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?
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More Background: Suppose we roll a fair die with “n faces”
k times. If k � 2

p
n + 2, then with probability > 1/2 two of

the numbers rolled will be the same.

k�1Y

j=1

✓
n � j

n

◆

 

1 �
p

n

n

!p
n


1

e

Idea with a hiccup:

• Take f(x) = x
2 + 1, and define f

(1)(x) = f(x) and
f

(j+1)(x) = f(f (j)(x)) for j � 1.

• Compute aj = f
(j)(1) mod n for 1  j  k where

k ⇡ 4p
n (or less).

• Compute gcd(ai � aj, n) for 1  i < j  k to get a
likely factorization of n.
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Why does this likely lead to a factorization of n?

What’s the hiccup?

Fixing the di�culty: Observe that if ai ⌘ aj (mod p) for a
prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.
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prime factor p of n, then ai+u ⌘ aj+u (mod p) 8 u 2 Z+.
Also, there is a u 2 {1, 2, . . . , j � i} for which (j � i)|(i + u).
If t = i + u, we get

at ⌘ at+(j�i) ⌘ at+2(j�i) ⌘ at+3(j�i) ⌘ · · · ⌘ a2t (mod p).

Compute a1, a2, . . . modulo n, and check as one progresses
the values of gcd(a2t � at mod n, n) for t = 1, 2, . . . , k.


