\/ t . Basic Arithmetic
‘z!rt Il. Primality Testing

Part lll. Factoring Integers



Problem. Given a composite integer n > 1, find some non-
trivial factorization of n, that is n = uv where each of u and
v 1s an integer > 1.

Note: One can be pretty confident about whether a large

integer n is composite without knowing a nontrivial factor-
ization.



Expectation. A random number n will have around log logn
prime factors.

Theorem. If w(n) is the number of distinct prime factors
of n, then

Z (w(n) — log log a:')z < xloglog x.

n<x

Corollary. For almost all n, we have

() lw(n) — loglogn| < (loglogn)?3.



Z (w(n) — log log az)z < xloglogx

n<x

Corollary. For almost all n, we have

() lw(n) — loglog n| < (loglog n)?/3.

Explanation of Corollary:

e Assume there are ex different n < x for which () does
not hold, where € > 0 is fixed and x is large.

e All but < /x of these are > /x.

e For such n, we have
| loglogn — loglogx| < 1
—> |w(n) — loglog z| > (1/2)(log log z)%/3.

e This contradicts the theorem.



Expectation 2. “Most” numbers n have a prime factor > /n.

1
» — =loglogz + A+ O(1/log x)

p<zT p

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 27

2. 2.1

n<z /r<p<z
p|n

log 2 = 0.69314718...



Expectation 2. “Most” numbers n have a prime factor > /n.

1
» — =loglogz + A+ O(1/log x)

p<zT p

Why does the sum of the reciprocals of the primes diverge

and where is this coming from (roughly)?

What does this have to do with Expectation 27

Z Z 1 — Z le(logZ)erO(lozw)

n<lz /r<p<c Ve<p<z n<x
p|n pln

log 2 = 0.69314718...



Comment: A random number n will have small prime factors,
so 1t is reasonable to first do a quick ‘“sieve” to determine if
this is the case.

How many integers n < x do not have a prime factor < 27

On the order of * .
log =




Pollard’s p — 1 Factoring Algorithm

For k < min{107,n — 1}, check if gcd(2* — 1 mod n,n) > 1.

Idea: If n has some prime factor p that is not too large and
p — 1 has fairly small prime factors, then probably p — 1
divides some k! above and hence the gcd. Further, it is likely
that all primes dividing n will not simultaneously divide the

first occurrence of such a k.

=

| > n:=31415926535897932384626433832795028841971693993751:

> check:=0:
for k from 1 to 25 while check=0 do
m := 2&"(k!)-1 mod n:
theged := gcd(m,n):
if theged > 1 then lprint(thegcd): check:=1: fi:
od:
| 1657

—




L

> n:=31415926535897932384626433832795028841971693993751:

> check:=0:
for k from 1 to 25 while check=0 do
m := 2&"(k!)-1 mod n:
theged := gcd(m,n):
if thegced > 1 then lprint(thegcd): check:=1: fi:
od:
| 1657




L

> n:=31415926535897932384626433832795028841971693993751:

> check:=0:
for k from 1 to 25 while check=0 do
m := 2&"(k!)-1 mod n:
theged := gcd(m,n):
if thegced > 1 then lprint(thegcd): check:=1: fi:
od:
1657

> n:=n/1657;
n = 18959521144174974281609193622688611250435542543

> check:=0:
for k from 1 to 8000 while check=0 do
m := 2&"(k!)-1 mod n:
thegced := gcd(m,n):
if theged > 1 then lprint(thegcd): check:=1: fi:
od:
2767321

"=



L

> n:=31415926535897932384626433832795028841971693993751:

> check:=0:
for k from 1 to 25 while check=0 do
m := 2&"(k!)-1 mod n:
theged := gcd(m,n):
if thegced > 1 then lprint(thegcd): check:=1: fi:
od:
1657

> n:=n/1657;
n = 18959521144174974281609193622688611250435542543

> check:=0:
for k from 1 to 8000 while check=0 do
m := 2&"(k!)-1 mod n:
thegced := gcd(m,n):
if theged > 1 then lprint(thegcd): check:=1: fi:
od:
2767321

> 1factor(2767320)

(2)° (3)7 (5) (7687)

Ll



Pollard’s p-Algorithm

This method typically finds a prime factor p of n in about
VD steps (so O(n'/*) steps), and small prime factors of n will
usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.



L'

k
365.°

> product( k= (365 —8) ..365)

0.9053761649




L™

> product

> product

> product

> product

i

(
(
(
(

- k= (365 — 8) ..365)
0.9053761649

-, k= (365 — 22) ..365)

0.4927027640

- k= (366 — 22) ..366)

0.4936769876

- k= (365 —21) ..365)

0.5243046907



Pollard’s p-Algorithm

This method typically finds a prime factor p of n in about
VD steps (so O(n'/*) steps), and small prime factors of n will
usually be found first.

A couple of relevant asides:

The birthday problem and a card trick.

And what if birthdays are not random?



Pollard’s p-Algorithm

More Background: Suppose we roll a fair die with “n faces”
k times. If k > 24/n + 2, then with probability > 1/2 two of
the numbers rolled will be the same.

(7)< (1) <




Pollard’s p-Algorithm

Idea with a hiccup:

e Take f(xr) = =2 + 1, and define fM(x) = f(x) and
FU(z) = F(fO () for j > 1.

e Compute a; = fU(1) modn for 1 < j < k where
k = /n (or less).

e Compute gcd(a; — aj,n) for 1 < 1 < 37 < k to get a

likely factorization of n.

Why does this likely lead to a factorization of n?

What’s the hiccup?



