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(x —a)"=x2" —a (mod x" —1,n)

What does this mean?

e The difference (x — a)™ — (™ — a) is an element in
the ideal (" — 1, n) in the ring Z[x].

e It 1s the same as the assertion
Rem((x —a)* — (x* —a),x* —1,x) mod n = 0

in MAPLE.

> Rem((x-2)"15-(x"15-2),x"3-1,x) mod 15
12x2+9x+9




r denotes a prime of size < logn

(x—a)"=x2" —a (mod x" —1,n)

Idea for Checking this Congruence:

o Write n = 2F1 1 2k2 o ... 1 2kt—1 1 2kt where
k1 < ko < -+ < k.

e Compute f;(x) = (x — a)zj (mod " — 1, n) for
7 € {0,1,...,k} successively by squaring.

e Compute ngl fkj (mod =" — 1,n) and compare

n mod r

to @ — (amodn).



Conjecture: Suppose r does not divide n(n2 — 1) where
r 1s prime. Then 7 1s a prime 1f and only if

¥) (x—1)"=2"—1 (mod z" —1,n).

v
n prime ——> () holds

7
(%) holds =— mn prime



Conjecture: Suppose 7 does not divide nn(n? — 1) where
r 18 prime. Then 7 1s a prime 1f and only if

¥) (x—1)"=2" -1 (mod z" — 1,n).

Idea for an Algorithm Assuming Conjecture:
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Conjecture: Suppose 7 does not divide nn(n? — 1) where
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there is a prime r € [2, 5 log n] not dividing n® — 1.



Conjecture: Suppose 7 does not divide nn(n? — 1) where
r 18 prime. Then 7 1s a prime 1f and only if

¥) (x—1)"=2" -1 (mod z" — 1,n).

Idea for an Algorithm Assuming Conjecture: Suppose
n 1s large. Since

H p > eV forx > 67,
px

there is a prime € [2, 5 log n] not dividing n® — 1. If
r divides m, then n 1s composite.



Conjecture: Suppose 7 does not divide nn(n? — 1) where
r 18 prime. Then 7 1s a prime 1f and only 1f

) (x—1)"=2" -1 (mod z" — 1,n).

Idea for an Algorithm Assuming Conjecture: Suppose
n 1s large. Since

H p > eV forx > 67,
pPx

there is a prime € [2, 5 log n] not dividing n® — 1. If
r divides n, then 1 1s composite. Otherwise, check if ()
holds to determine whether 7 1s a prime.



Conjecture: Suppose 7 does not divide nn(n? — 1) where
r 18 prime. Then 7 1s a prime 1f and only 1f

) (x—1)"=2" -1 (mod z" — 1,n).

What if the Conjecture is not true?
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case of Fermat’s Last Theorem holds for in-
finitely many prime exponents.
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66 %9

s’ as 1n special
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log x
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> 4./71 d dr(m).
g > 4v/rlogn and glordy(n)

X

n®*=1 (mod r) — q|s



Lemma 2. There are positive constants ¢ and c2 such
that the interval I = (c1(logn)®, ca(log n)°] contains
a prime 7 with 7 — 1 having a prime factor g satistying

q > 4v/rlogn and qlord,(n).



Lemma 2. There are positive constants ¢ and c2 such
that the interval I = (c1(logn)®, ca(log n)°] contains
a prime 7 with 7 — 1 having a prime factor g satistying

q > 4v/rlogn and qlord,(n).

Proof.



Lemma 2. There are positive constants ¢ and ¢ such
that the interval I = (c1(logn)®, ca(log n)°] contains
a prime 7 with 7 — 1 having a prime factor g satistying

q > 4v/rlogn and qlord,(n).

Proof. We may suppose that 7 1s large.



Lemma 2. There are positive constants ¢ and c2 such
that the interval I = (c1(logn)®, ca(log n)°] contains
a prime 7 with 7 — 1 having a prime factor g satistying

q > 4v/rlogn and qlord,(n).

Proof. We may suppose that 7o 1s large. By Lemma 1, the
number of special primes in I is at least



Lemma 2. There are positive constants ¢ and c2 such
that the interval I = (c1(logn)®, ca(log n)°] contains
a prime 7 with 7 — 1 having a prime factor g satistying

q > 4y/rlogn and gqlord,(n).

Proof. We may suppose that 7o 1s large. By Lemma 1, the
number of special primes in I is at least

T (cz(log n)6) — Ts (Cl (log n)ﬁ)



Lemma 2. There are positive constants ¢ and c2 such
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Lemma 2. There are positive constants ¢ and c2 such
that the interval I = (c1(logn)®, ca(log n)°] contains
a prime 7 with 7 — 1 having a prime factor g satistying

q > 4v/rlogn and qlord,(n).

Proof. We may suppose that 7o 1s large. By Lemma 1, the
number of special primes 1n I 1s at least
s (c2(log n)6) — ms(cq(log n)6)
> 7s(c2(log n)G) — m(c1(log n)G)
cca(logn)® c1(logn)®

7 log log n 3 log log n
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number of special primes in I is at least

T (cz(log n)6) — Ts (Cl(log n)ﬁ)
> g (cz(log n)G) — W(Cl(log n)ﬁ)

S (Ccz Cl) (log n)®

7 3 ) loglogmn
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number of special primes in I is at least

T (cz(log n)6) — Ts (Cl (log n)ﬁ)
> g (cz(log n)G) — W(Cl(log n)ﬁ)
(log n)®

> c’ :
log log n
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¢’ (log n)®

6 6
_ > °
Ts (CZ(log n) ) Ts (Cl (log n) ) — loglogn
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q2r2/3:ﬁr1/6
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Proof. There are > ¢’(log )%/ log log n primes 7 in I
with 7—1 having a prime factor ¢ > r2/3 > 4./7 log n.
We want at least one such q to divide ord,(72). Note that
if ¢ 1 ord,-(n), then

ordr(n) < rl1/3 < M where M = cé/g(log n)?.

Hence, r divides
- 2
H (m? —1) < n™M”.
1<j<M
If there are k primes dividing the product, then

2k < nM- — k = O(M2 logn) = O((logn)S).




Proof. There are > ¢’(log )%/ log log n primes 7 in I
with »—1 having a prime factor g > r2/3 > 44/rlogn.
We want at least one such q to divide ord,(72). Note that
if ¢ 1 ordr(m), then
ordr(n) < rl1/3 < M where M = cé/g(log n)?.
Hence, r divides
H (nj — 1) < an.
1<j<M
If there are k primes dividing the product, then
2
2k < pM" — k= O(M2 logn) = O((logn)S).

Hence, for at least one prime » € I as above . ... B
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Lemma 2. There are positive constants ¢ and c2 such
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S0 what’s the algorithm?



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while (( r<n ) {

4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;
7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )
8. break;

0. r—1r+1;

10. }

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



I L.emma 2. There are positive constants ¢j and c2 such

1| that the interval I = (c1(logn)®, ca(log n)°] contains
2| a prime r with 7 — 1 having a prime factor g satistying

3 q > 4y/rlogn and glord,(n).

4% SCTrTTT; s 7

5. if ( r 1s prime )

6. let g be the largest prime factor of r —1;
7. if ( g >4+y/rlogn ) and ( n" Y9 £1 (mod r) )
8. break; T

9. r—1r—+1; q|ord,(n)
10. }
11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;

13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while (( r<n ) {

4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;
7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )
8. break;

0. r—1r+1;

10. }

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

.if ( n is of the form a’, b>1 ) output COMPOSITE;
e T = 23
. while ( r<mn ) { Lemma 2 = loop ends with r < (log n)®

if ( ged(n,r) #1 ) output COMPOSITE;

if ( r 1s prime )
let ¢ be the largest prime factor of r — 1;
if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )

break;

O 00 N o U1 & W DN B~

Lemma 2. There are positive constants ¢1 and c2 such
that the interval I = (c1(logn)®, c2(log n)®] contains

10
11 a prime r with » — 1 having a prime factor g satisfying

q > 4v/rlogn and qlord,(n).




Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while ((r<mn ) { Lemma 2 = loop ends with r < (log n)®
4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;

7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )

8. break;

9. r—1r—+1; Note that, after the while loop, » = 7 1s possible.

10. }

11. for a=1 to 2y/rlogn

12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while ((r<mn ) { Lemma 2 = loop ends with r < (log n)®
4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;

7. if ( g >4+y/rlogn ) and ( n"Y/9£1 (mod r) )

8. break;

9. r—1r—+1; Note that, after the while loop, 7 = n 1s possible.
10. ) Then n 1s prime, and the algorithm indicates it 1s.

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while ((r<mn ) { Lemma 2 = loop ends with r < (log n)®
4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;

7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )

8. break;

O. r—1r-+1; IMPORTANT :

10. }

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;
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1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while ((r<mn ) { Lemma 2 = loop ends with r < (log n)®
4. if ( ged(n,r) #1 ) output COMPOSITE;
5. if ( r 1s prime )
6. let ¢ be the largest prime factor of r — 1;
7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )
8. break;
9 r—r+4+1; IMPORTANT : In general, if 72 1s a prime, then the
10. ) algorithm indicates it 1s.

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3. while (( r<n ) {

4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;
7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )
8. break;

0. r—1r+1;

10. }

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 = 2;

3.while (( r<n ) {

4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let g be the largest prime factor of r —1;
7. if ( g >4+y/rlogn ) and ( n"Y/9=£1 (mod r) )
8. break;

9. r—r+1; Since the while loop ends with r < (logn)®,
10. ) the running time is polynomial in log n.

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a’, b>1 ) output COMPOSITE;
2.1 =2

3.while (( r<n ) {

4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;
7. if ( g > 4+yrlogn ) and ( n" Y9421 (mod r) )
8. break;

9. r—1r+1;

10. }

11. for a=1 to 2y/rlogn
12. if ( (x—a)"#x2"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a?, b >1 ) output COMPOSITE;
2.1 =2
3.while (( r<n ) {
4. if ( ged(n,r) #1 ) output COMPOSITE;
5. if ( r 1s prime )
6. let ¢ be the largest prime factor of r — 1;
7. if ( g > 4+yrlogn ) and ( n" Y9421 (mod r) )
8. break;

Note that n does not have
9. r—1r+1; . . e

any prime divisors < 7.
10. }
11. for a=1 to 2y/rlogn
12. if ( (x—a)"#x2"—a (modx"—1,n) ) output COMPOSITE;

13. output PRIME;



Input: 1integer n > 1

1. if ( n is of the form a®, b>1 ) output COMPOSITE;
2.1 = 2;

3.while (( r<n ) {

4. if ( ged(n,r) #1 ) output COMPOSITE;

5. if ( r 1s prime )

6. let ¢ be the largest prime factor of r — 1;

7. if ( g >4+y/rlogn ) and ( n" Y9 £1 (mod r) )

8. break;

9. r—1r—+1; PROBLEM : Show that if 72 1s composite, then the
10. ) algorithm indicates it 1s.

11. for a=1 to 2y/rlogn
12. if ( (x—a)"Zx"—a (modx"—1,n) ) output COMPOSITE;
13. output PRIME;



SITUATION:
T 1S composite, 7 1S a prime
g isaprime, q > 4+/rlogn
qgtn, gq|(r—1), gqlord,(n)

WANT: There is an integer a with 1 < a < 2+4/rlogn
such that

(x —a)" Z (" —a) (modz" —1, n).



