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THE FACTORIZATION OF CYCLOTOMIC
POLYNOMIALS MODULO A PRIME

(x � a)n ⌘ xn
� a (mod xr

� 1, n)

What does this mean?
• The difference (x � a)n � (xn

� a) is an element in
the ideal

�
xr

� 1, n
�
in the ring Z[x].

• It is the same as the assertion
Rem ((x � a)n � (xn � a), xr � 1, x) mod n = 0
in MAPLE.
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r denotes a prime of size⌧ log n

(x � a)n ⌘ xn
� a (mod xr

� 1, n)

Idea for Checking this Congruence:
•Write n = 2k1 + 2k2 + · · · + 2kt�1 + 2kt, where

k1 < k2 < · · · < kt.

• Compute fj(x) = (x � a)2
j

(mod xr
� 1, n) for

j 2 {0, 1, . . . , kt} successively by squaring.
• Compute

Qt
j=1 fkj

(mod xr
� 1, n) and compare

to xnmod r
� (amodn).
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Conjecture: Suppose r does not dividen(n2−1) where
r is prime. Then n is a prime if and only if

(x − 1)n ≡ xn − 1 (mod xr − 1, n).(∗)

n prime
!

=⇒ (∗) holds

(∗) holds
?

=⇒ n prime
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Conjecture: Suppose r does not divide n(n2
�1) where

r is prime. Then n is a prime if and only if

(⇤) (x � 1)n ⌘ xn
� 1 (mod xr

� 1, n).

Idea for an Algorithm Assuming Conjecture: Suppose
n is large. Since

Y

px

p � e0.8x for x � 67,

there is a prime r 2 [2, 5 log n] not dividing n2
� 1. If

r divides n, then n is composite. Otherwise, check if (⇤)
holds to determine whether n is a prime.



Conjecture: Suppose r does not divide n(n2
�1) where

r is prime. Then n is a prime if and only if

(⇤) (x � 1)n ⌘ xn
� 1 (mod xr

� 1, n).

What if the Conjecture is not true?
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• Etienne Fouvry, Théorèm de Brun-Titchmarsh, appli-
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cation au théorèm de Fermat, Invent. Math 79 (1985),
383–407.

• Leonard Adleman and D. Roger Heath-Brown, The first
case of Fermat’s Last Theorem, Invent. Math 79 (1985),
409–416.

Fouvry showed that there are infinitely many
primes p for which the largest prime factor
of p � 1 exceeds p2/3. More precisely, he
showed . . .



Two Important Papers in the Literature:
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• Etienne Fouvry, Théorèm de Brun-Titchmarsh, appli-
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Lemma 2. There are positive constants c1 and c2 such
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a prime r with r � 1 having a prime factor q satisfying

q � 4
p
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Input: integer n > 1

1. if ( n is of the form ab, b > 1 ) output COMPOSITE;

2. r = 2;

3. while ( r < n ) {

4. if ( gcd(n, r) 6= 1 ) output COMPOSITE;

5. if ( r is prime )

6. let q be the largest prime factor of r � 1;

7. if ( q � 4
p

r log n ) and ( n(r�1)/q 6⌘ 1 (mod r) )

8. break;

9. r ! r + 1;

10. }

11. for a = 1 to 2
p

r log n

12. if ( (x�a)n 6⌘xn�a (mod xr�1, n) ) output COMPOSITE;

13. output PRIME;
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n(r�1)/q

Lemma 2. There are positive constants c1 and c2 such
that the interval I = (c1(log n)6, c2(log n)6] contains
a prime r with r � 1 having a prime factor q satisfying

q � 4
p

r log n and q|ordr(n).
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Note that, after the while loop, r = n is possible.
Then n is prime, and the algorithm indicates it is.
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2. r = 2;

3. while ( r < n ) { Lemma 2 =) loop ends with r ⌧ (log n)6
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5. if ( r is prime )
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r log n ) and ( n(r�1)/q 6⌘ 1 (mod r) )

8. break;

9. r ! r + 1;

10. }

11. for a = 1 to 2
p

r log n

12. if ( (x�a)n 6⌘xn�a (mod xr�1, n) ) output COMPOSITE;

13. output PRIME;

IMPORTANT : In general, if n is a prime, then the
algorithm indicates it is.
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6. let q be the largest prime factor of r � 1;

7. if ( q � 4
p

r log n ) and ( n(r�1)/q 6⌘ 1 (mod r) )

Since the while loop ends with r ⌧ (log n)6,
the running time is polynomial in log n.
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Input: integer n > 1

1. if ( n is of the form ab, b > 1 ) output COMPOSITE;

2. r = 2;

3. while ( r < n ) {

4. if ( gcd(n, r) 6= 1 ) output COMPOSITE;

5. if ( r is prime )

6. let q be the largest prime factor of r � 1;

7. if ( q � 4
p

r log n ) and ( n(r�1)/q 6⌘ 1 (mod r) )

8. break;

9. r ! r + 1;

10. }

11. for a = 1 to 2
p

r log n

12. if ( (x�a)n 6⌘xn�a (mod xr�1, n) ) output COMPOSITE;

13. output PRIME;

Note that n does not have
any prime divisors < r.

R⇡,P3 R⇡,P2 R⇡,P1 = R⇡,Q

= h(x)w1(x) + R(x) + p w2(x) =) /

q - n h(x)

q - n, q|(r � 1), q|ordr(n)

Qt
j=1 p

ej�1
j ordr(pj)



Input: integer n > 1

1. if ( n is of the form ab, b > 1 ) output COMPOSITE;

2. r = 2;

3. while ( r < n ) {

4. if ( gcd(n, r) 6= 1 ) output COMPOSITE;

5. if ( r is prime )

6. let q be the largest prime factor of r � 1;

7. if ( q � 4
p

r log n ) and ( n(r�1)/q 6⌘ 1 (mod r) )

8. break;

9. r ! r + 1;

10. }

11. for a = 1 to 2
p

r log n

12. if ( (x�a)n 6⌘xn�a (mod xr�1, n) ) output COMPOSITE;

13. output PRIME;

PROBLEM : Show that if n is composite, then the
algorithm indicates it is.



SITUATION:
n is composite, r is a prime

q is a prime, q ≥ 4
√

r logn

q|(r − 1), q|ordr(n)

WANT: There is an integer a with 1 ≤ a ≤ 2
√

r logn
such that

(x − a)n ̸≡
(

xn − a
)

(mod xr − 1 , n ).

= h(x)w1(x) + R(x) + p w2(x) =) /

q - n

q - n, q|(r � 1), q|ordr(n)


