
CLASSIFYING REDUCIBLE POLYNOMIALS

WITH SMALL NORM



Theorem (Schinzel): Fix a0, . . . , ar ∈ Z − {0}. Then
there is an algorithm for obtaining a finite classification of
the polynomials of the form arxdr + · · · + a1x

d1 + a0
that have reducible non-reciprocal part.



Theorem (Schinzel): Fix a0, . . . , ar ∈ Z − {0}. Then
there is an algorithm for obtaining a finite classification of
the polynomials of the form arxdr + · · · + a1x

d1 + a0
that have reducible non-reciprocal part.

ar xdr + · · · + a1 xd1 + a0



Theorem (Schinzel): Fix a0, . . . , ar ∈ Z − {0}. Then
there is an algorithm for obtaining a finite classification of
the polynomials of the form arxdr + · · · + a1x

d1 + a0
that have reducible non-reciprocal part.

ar

↑
fixed

xdr + · · · + a1
↑

fixed

xd1 + a0
↑

fixed



Theorem (Schinzel): Fix a0, . . . , ar ∈ Z − {0}. Then
there is an algorithm for obtaining a finite classification of
the polynomials of the form arxdr + · · · + a1x

d1 + a0
that have reducible non-reciprocal part.

ar

↑
fixed

x

variable
↓
dr + · · · + a1

↑
fixed

x

variable
↓
d1 + a0

↑
fixed



Theorem: If a > b > c > d > e > 0, then the
non-reciprocal part of

f(x) = xa + xb + xc + xd + xe + 1

is irreducible unless f(x) is a variation of

f(x) = x5s+3t + x4s+2t + x2s+2t + xt + xs + 1

= (x3s+2t − xs+t + xt + 1)(x2s+t + xs + 1).



Theorem (F. & Murphy): If n > c > b > a > 0, then
the non-reciprocal part of

f(x) = xn ± xc ± xb ± xa ± 1

is irreducible unless f(x) is a variation of one of the fol-
lowing:

x8t − x7t − x4t + x2t − 1 = (x3t − xt − 1)(x5t − x4t + x3t − xt + 1)

x8t − x6t + x4t − xt − 1 = (x3t − x2t + 1)(x5t + x4t − x2t − xt − 1)

x9t − x7t + x6t − xt − 1 = (x3t − x2t + 1)(x6t + x5t − x2t − xt − 1)

x10t − x7t − x6t − x4t − 1 = (x3t − xt − 1)(x7t + x5t + x2t − xt + 1)

x10t − x9t + x8t − xt − 1 = (x3t − x2t + 1)(x7t + x5t − x2t − xt − 1)

x10t − x6t − x5t + x4t − 1 = (x5t − x4t + x3t − xt + 1)(x5t + x4t − x2t − xt − 1)

x10t − x9t − x6t + x3t − 1 = (x3t − xt − 1)(x7t − x6t + x5t − x3t + x2t − xt + 1)

x10t + x7t + x4t − xt − 1 = (x3t − x2t + 1)(x7t + x6t + x5t + x4t − x2t − xt − 1)



x11t − x8t − x6t − x5t − 1 = (x4t − xt + 1)(x7t − x3t − x2t − xt − 1)

x11t + x8t + x6t − xt − 1 = (x3t − x2t + 1)(x8t + x7t + x6t + x5t − x2t − xt − 1)

x13t − x11t − x9t − x4t − 1 = (x3t − xt − 1)(x10t + x7t − x6t + x5t + x2t − xt + 1)

x13t − x11t + x10t − x2t − 1 = (x5t − x4t + x2t − xt + 1)(x8t + x7t − x2t − xt − 1)

x14t − x11t + x9t − x3t − 1 = (x7t − x6t + x3t − xt + 1)
× (x7t + x6t + x5t − x3t − x2t − xt − 1)

x14t − x9t − x8t + x7t − 1 = (x7t − x6t + x5t − x3t + x2t − xt + 1)
× (x7t + x6t − x4t − xt − 1)

x2t+u − xt+2u + x2u − xt − 1 = (xt − xu + 1)(xt+u − xu − 1)

x5t+2u − x4t+2u − xt+u − xt − 1 = (x2t+u − xt+u − 1)(x3t+u + xt + 1)

x5t+3u − x4t+2u − xt+u − xt − 1 = (x2t+u − xt − 1)(x3t+2u + xt+u + 1)

... ... ...



Lemma: Let s and t be positive integers. Consider a
system of linear equations in the variables x0, . . . , xs of
the form

αi0x0 + αi1x1 + · · · + αisxs = βi (1 ≤ i ≤ t),

where the αij and βi are all in Z.
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How can we determine if its
non-reciprocal part is irreducible?
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Claim: Suppose a system has infinitely many solutions.
Then it cannot have a solution in distinct integers.

Proof: Assume otherwise. By the lemma, there must be a
solution in distinct integers k′

0, k′
1, . . . , k′

s with

k′
u = min

0≤j≤s
{k′

j} ≤ −1
or

k′
v = max

0≤j≤s
{k′

j} ≥ n + 1.

Note that

k′
0 = 0 and k′

s = n =⇒ k′
u ≤ 0 and k′

v ≥ n.

Hence,
n − k′

v + k′
u ≤ −1.
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s
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Either

n − k′
v + k′

u = n − k′
j + k′
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for some exponent m appearing in f(x)f̃(x).

We have a contradiction, and the claim follows.
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What if the exponents dj in f are variable?

f(x) =
r∑

j=0

ajx
dj and w(x) =

s∑

j=0

bjx
kj

• Consider each possibility of cancelled terms in ff̃ .
• Solve systems as before to obtain possible w(x).
• Ignore any system having infinitely many solutions.

• For each solution, use w(x)w̃(x) = f(x)f̃(x) to
solve for the dj’s (the exponents of f ).

• This gives a classification of f for which w exists.

• Solve more systems to see when w is ±f or ±f̃ .
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