CLASSIFYING REDUCIBLE POLYNOMIALS
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Theorem: Ifa > b > c¢c > d > e > 0, then the
non-reciprocal part of

f(x) — 2%+ b 2 2% 241
Isirreducible unless f(x) isavariation of
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Theorem (F. & Murphy): Ifn > ¢ > b > a > 0, then
the non-reciprocal part of

b a
flx) ="t £+ 1

isirreducible unless f(x) isavariation of one of the fol-
lowing:

wSt_$7t_w4t_|_w2t_1:($3t_mt_1)(w5t_w4t+m3t_mt_|_1)

28 — 28 2t gt — 1 = (2% — 22 + 1) (2% + 24 — 22 — 2t — 1)
2% — Tt gf gt 1 = (2% — 22 + 1) (2% + 2 — 22 — o' — 1)
pl0t _ Tt 6t At (2% — zt — 1)(w7t + 2%t 4 2 — ot 1)
20— g9 g8 gt 1 = (23 — 22 4+ 1)(z" + 2% — 2% — 2t — 1)
210 g6t g5t gt ] = (@B — g a3t gt 4 1) (2 4 2 — 2 — 2t — 1)
210 — 2% _ 6t 4 g3t ] = (23t — gt — 1)(27t — 2% + 27 — 23t + 2% — 2t 4 1)

poe LY CRUTNE L N (m?,t_w2t_|_1)(m7t+$6t+w5t+w4t_m2t_wt_1)



m11t _ .CESt _ :Bﬁt _ :D5t — 1= ($4t _ :Bt + 1)(:8” _ w3t _ CB2t _ :Bt _ 1)
ot 8t 4 6t gt 1 = (w3t — x4 1)(x8t 4Tt 8t 4 Bt g2t gt 1)
P13t _ 11t 9t 4t g (mSt gt 1)(w10t 4ot — g6t Bt 4 g2 gt 4 1)
13t _ g1t 4 10t _ g2t g (w5t — gt gt 4 1)(3381& 4Tt — g2t gt — 1)
pl4t _ 11t 4 g9 g3t 7 — (w7t — 28 4 3t gt 4 1)
> (w7t 4 @Bt Bt g8t g2t gt 1)
g4t % _ g8 Tt ] — (m7t — xSt Bt 8t 4 g2t gty 1)

X (337t—|—336t—$4t—33t—1)

w2t+u . wt+2u + m2u _ wt -1 = (wt — U + 1)(wt+u — ¥ — 1)
w5t+2u _ m4t—|—2u _ wt—l—u _ CBt -1 = (w2t—|—u _ CBt+u _ 1)(w3t+u ‘I‘ mt _|_ 1)
m5t—i—3u . w4t—{—2u _ CIZ‘H_U _ CBt — 1= (w2t—|—u _ CBt _ 1)($3t+2u + mt—{—u _|_ 1)



Lemma: Let s and t be positive integers. Consider a
system of linear equations in the variables xg, . . . , x s Of

the form
o000 + 11 + - Fages = B (1 <1< t),

where the «;; and 3; are all in Z.
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Theorem (Schinzdl): Fixag,...,a,r € Z — {0}. Then
there is an algorithm for obtaining a finite classification of
the polynomials of theform a,z% + - - - + a1z® + ag
that have reducible non-reciprocal part.

First, consider the case that the d;'s(and a ;' s) are fixed.

How can we determineif its
non-reciprocal part isirreducible?
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Claim: Suppose a system has infinitely many solutions.
Then it cannot have a solution in distinct integers.

Proof: Assume otherwise. By the lemma, there must be a

solution in distinct integers k), k7, . . . , k% with
k! = min {K’} < —1
o u OSJSS{ J} —

k! = max {k’Y > n + 1.
! 0§j§s{ jhznt

Note that
kb=0 and k., =n — Kk, <0 and k., > n.

Hence,
n—k +k, < —1.
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solution in distinct integers k), k%, . . . , k.,
n—k +k <—1
Either
n— ki +k, =n—k;+k, (ij)# (u,v)

or
n—k,’v—l—k;:m

for some exponent m appearing in f(z) f (z).

We have a contradiction, and the claim follows.
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What If the exponentsd; in f arevariabl

e?

f(x) = Z a,ja:dj and w(x) = Z bja:kj
j=0

7=0

e Consider each possibility of cancelled termsin f f.
e Solve systems as before to obtain possible w(x).
e Ignore any system having infinitely many solutions.

e For each solution, use w(x)w(x) = f(x)f(x) to

solvefor the d;’s(the exponents of f).

e Thisgivesaclassification of f for which w exists.

e S0lve more systems to see when w IS

S/
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