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Theorem: There is an algorithm with the following prop-
erty: Given a non-reciprocalf(x) ∈ Z[x] with N non-
zero terms, degreen and heightH, the algorithm deter-
mines whetherf(x) is irreducible in time

c(N, H)(log n)c
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wherec(N, H) depends only onN andH andc′(N)
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Proof. Let

f(x) = arxdr + · · · + a1x
d1 + a0.

Consider

F (x1, . . . , xr) = arxr + · · · + a1x1 + a0

so that

F (xd1, . . . , xdr) = arxdr + · · · + a1x
d1 + a0.

Begin the algorithm by constructing the finite setsS andT

of matrices in Schinzel’s Theorem 2. Observe thatS and
T depend onF and not on thed1, . . . , dr, so this takes
running time≤ c1(N, H).
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Schinzel’s Theorem 2 now indicates to us whetherf(x)

has a reducible non-cyclotomic part. If so, then we output
thatf(x) is reducible. If not, we have more work to do.



Recall, we had the following theorem.
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Theorem: There is an algorithm that has the following
property: givenf(x) =

∑N
j=1 ajx

dj ∈ Z[x] with
deg f = n, the algorithm determines whetherf(x) has
a cyclotomic factor and with running time

≤ c3(N, H)(log n)c4(N)

asN tends to infinity, whereH = max1≤j≤N{|aj|}.

Algorithm Continued: If the non-cyclotomic part off(x)

is irreducible, then use the algorithm in the above theorem.
This completes the proof of the theorem. �
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Erdős: $25 (for proof none exists)

Selfridge: $2000 (for explicit example)
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Sierpinski’s Application:

There exist infinitely many (even a positive proportion of)
positive integers k such that k × 2n + 1 is composite for
all non-negative integers n.

Selfridge’s Example: k = 78557
(smallest odd known)

Polynomial Question: Does there exist f(x) ∈ Z[x]
such that f(1) 6= −1 and f(x)xn + 1 is reducible for
all non-negative integers n?

Answer: Nobody knows.
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is reducible for all non-negative integers n

Theorem. There exists an f(x) ∈ Z[x] with non-negative
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Schinzel’s Example:

(5x9+6x8+3x6+8x5+9x3+6x2+8x+3)xn+12
is reducible for all non-negative integers n

Theorem. There exists an f(x) ∈ Z[x] with non-negative
coefficients such that f(x)xn+4 is reducible for all non-
negative integers n.

Comment: For each n, the second polynomial is divisible
by at least one Φk(x) where k divides

2436750334086348800341531737112913231716191823232929313137374141.



Schinzel’s Theorem: If there is an f(x) ∈ Z[x] such
that f(1) 6= −1 and f(x)xn + 1 is reducible for all
non-negative integers n, then there is an odd covering of
the integers.
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Comment: The conjecture remains open. If we take
g(x) =

∑s
j=0 bjx

j ∈ Z[x] where possiblys > r,
then the problem has been resolved by Schinzel.
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First Attack on Tur án’s Problem:

Idea: Consider

g(x) = xn + f(x).

If f(0) = 0 or f(1) = −1, then consider instead

g(x) = xn + f(x) ± 1.

If one can showg(x) is irreducible for somen, then the
conjecture of Tuŕan (modified sodeg g > deg f is al-
lowed) is resolved withC = 2.

Problem: Dealing withg(x) = xn+f(x) is essentially
equivalent to the odd covering problem. So this is hard.



Second Attack on Turán’s Problem:

Idea: Consider

g(x) = xm ± xn + f(x).

If f(0) = 0, then consider instead

g(x) = xm ± xn + f(x) ± 1.
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bjx
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{

2 if f(0) 6= 0
3 always.
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r∑

j=0

ajx
j ∈ Z[x],

there exist infinitely many irreducible

g(x) =
s∑

j=0

bjx
j ∈ Z[x]

such that
max{r,s}∑

j=0

|aj − bj| ≤
{

2 if f(0) 6= 0
3 always.

One of these is such that

s < exp
(
(5r + 7)(‖f‖2 + 3)

)
.
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and v(x) = xn + f(x) to reduce problem to
consideration of reciprocal factors.

I Find a bound on the number ofxm + xn + f(x)

with reciprocal non-cyclotomic factors.
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Ideas Behind Proof:

I To bound thexm + xn + f(x) with cyclotomic
factors, set

A = {(m, n) :M <m≤2M, N <n≤2N},

and letAp ⊂ A (arising from whenF (ζpk) = 0).
Use a “sieve” argument to estimate the size of

A −
⋃

Ap.

I Deduce that someF (x) = xm+xn+f(x) with
m ∈ (M, 2M ] andn ∈ (N, 2N ] is irreducible
(whereM andN are large andM > N ).



Current Knowledge:

Theorem: Givenf(x) =
r∑

j=0

ajx
j ∈ Z[x], there are

infinitely many irreducibleg(x) =
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|aj − bj| ≤ 5.
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)
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Current Knowledge:

Theorem: Givenf(x) =
r∑

j=0

ajx
j ∈ Z[x], there are

infinitely many irreducibleg(x) =
s∑

j=0

bjx
j ∈ Z[x]

such that max{r,s}∑
j=0

|aj − bj| ≤ 3.

One of these is such that

s ≤ some polynomial inr.
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