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F(xiy...,2¢p) = arxy + -+ 4+ a1x1 + ag-
Then there exist finite sefs andT" of matrices satisfying:

() Each matrix InS or T'Is anr X p matrix with
Integer entries and of rankfor somep < 7.

(i) The matrices IS andT’ are computable.



(1) For every set of positive integeth, . . ., dy
withdy; <do < --- <d,, the non-reciprocal
part of F(z9, ..., x%) is reducible if and
only if there Is anr X p matrix NV in S and
integersvy, . . ., v, Satisfying

dq V1
dr ’U.p

but there is nar x p’ matrix M in T with
p’ < p and no integersy, . . ., "’,,o' satisfying

dq /vi\
d2 ) — pm | V2

dy \fv:’o,) |
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Theorem: There Is an algorithm with the following prop:
erty: Given a non-reciprocaf (x) € Z[x] with N non-
zero terms, degrea and heightH, the algorithm deter-
mines whethelf (x) is irreducible in time

c(N, H)(log n)® ()

wherec(IN, H) depends only odV and H andc’(IN)
depends only oiV.
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Proof. Let
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Proof. Let
f(z) = arz® + -+ - + a1z + ay.
Consider

F(x1y...,x¢y) = arxy + -+ 4+ a1x1 + ag
so that
F(wdl, ey wd’“) = ara;d"“ + .o+ almdl + ayg.

Begin the algorithm by constructing the finite s8tandT’
of matrices in Schinzel's Theorem 2. Observe tBaind
T depend onF' and not on thely, ..., d;, SO this takes
running time< ¢{ (N, H).
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are unknowns and elementary row operations are don
solve the above system of equations. The rankN\ois
p, So If a solution exists, then it is unique. This Involve
performing elementary operations${ —, X, and--) with
entries InIN and thed; (which are< n). The running
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Next, the algorithm checks each matiif in T to see If

/
dq (’”}\
d2| = pm | V2
dr \v;),
for some integerss, ..., v'p, by using elementary row

operations to solve the system of equations fomjneThe

rank of M is p’, so if a solution exists, then it is unique
This involves performing elementary operations, (—,
X, and->-) with entries InM and thed; (which are< n).
The running time is agaif< co(IN, H) log? n.
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Schinzel's Theorem 2 now indicates to us whetlfiéx)
has a reducible non-cyclotomic part. If so, then we out
that f (x) is reducible. If not, we have more work to do.
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Recall, we had the following theorem.

Theorem: There is an algorithm that has the followin
property: givenf(x) = Zé\le aja:dj € Zlx] with
deg f = n, the algorithm determines whethg(x) has
a cyclotomic factor and with running time

< exp ((2 + o(1))\/N/log N(log N + loglog n))
X log(H + 1)

asN tends to infinity, wherdd = max;<;j<n{|a |}

We’ll come back to this.
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exp ((2 + o(1))/N/log N (log N + loglogn))
X log(H + 1)

split into two parts

c3(N, H)
(log n)c+(Y)
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Theorem: There Is an algorithm that has the followin
property: givenf(x) = Z;'Vzl a,ja:dj € Zlx] with
deg f = m, the algorithm determines whethg(x) has
a cyclotomic factor and with running time

< ¢3(N, H)(log n) ()
asN tends to infinity, wherdd = max;<;j<n{|a;l|}.
Algorithm Continued: If the non-cyclotomic part of (x)

IS irreducible, then use the algorithm in the above theore
This completes the proof of the theorem. []



A CURIOUS CONNECTION WITH

THE ODD COVERING PROBLEM
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Coveringsof the Integers:
A covering of the integersis a system of congruences
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having the property that every integer satisfies at least one
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Example 1.

r=0 (mod 2)
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Example 2:

xr =0
r = 2
xr =
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Example 2:
r=0 (mod 2)
r = (mod 3)
r = (mod 4)
x =1 (mod 6)
r=3 (mod 12)

O 1 2 3 4 5 6 7 8 9 10 11
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Open Problem:

Does there exist an “odd covering” of the integers,
a covering consisting of distinct odd moduli > 17

Erdos. $25 (for proof none exists)

Selfridge: $2000 (for explicit example)



Sierpinski’sApplication:

There exist infinitely many (even a positive proportion of)
positiveintegers k such that k& x 2™ + 1 is composite for
all non-negative integers n.



Sierpinski’sApplication:

There exist infinitely many (even a positive proportion of)
positiveintegers k such that k& x 2™ + 1 is composite for
all non-negative integers n.

Selfridge seExample: k& = 78557
(smallest odd known)



Sierpinski’sApplication:

There exist infinitely many (even a positive proportion of)
positiveintegers k such that k& x 2™ + 1 is composite for
all non-negative integers n.

Selfridge seExample: k& = 78557
(smallest odd known)

Polynomial Question: Does there exist f(x) € Z[x]
such that f(x)x™ + 1 is reducible for all non-negative
Integers n?



Sierpinski’sApplication:

There exist infinitely many (even a positive proportion of)
positiveintegers k such that k& x 2™ + 1 is composite for
all non-negative integers n.

Selfridge seExample: k& = 78557
(smallest odd known)

Polynomial Question: Does there exist f(x) € Z[x]
such that f(x)x™ + 1 is reducible for all non-negative
Integers n?

Require: f(1) # —1



Sierpinski’sApplication:

There exist infinitely many (even a positive proportion of)
positiveintegers k such that k& x 2™ + 1 is composite for
all non-negative integers n.

Selfridge seExample: k& = 78557
(smallest odd known)

Polynomial Question: Does there exist f(x) € Z[x]
such that f(1) # —1 and f(x)x™ + 1 isreducible for
all non-negative integers n?



Sierpinski’sApplication:

There exist infinitely many (even a positive proportion of)
positiveintegers k such that k& x 2™ + 1 is composite for
all non-negative integers n.

Selfridge seExample: k& = 78557
(smallest odd known)

Polynomial Question: Does there exist f(x) € Z[x]
such that f(1) # —1 and f(x)x™ + 1 isreducible for
all non-negative integers n?

Answer: Nobody knows.



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Comment: For each n, the above polynomial isdivisible
by at |east one of

®p.(x) wherek € {2,3,4,6,12}.



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Comment: For each n, the above polynomial isdivisible
by at |east one of

®p.(x) wherek € {2,3,4,6,12}.

n=0 (mod 2) — f(x)z" +12=0 (mod x+ 1)



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Comment: For each n, the above polynomial isdivisible
by at |east one of

®p.(x) wherek € {2,3,4,6,12}.

n=0 (mod 2) — f(x)z" +12=0 (mod x+ 1)
n=2 (mod 3) = f(x)z"+12=0 (mod z*+x + 1)



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Comment: For each n, the above polynomial isdivisible
by at |east one of

®p.(x) wherek € {2,3,4,6,12}.
n=0 (mod 2) — f(x)z" +12=0 (mod x+ 1)

n=2 (mod 3) = f(x)z"+12=0 (mod z*+x + 1)
n=1 (mod 4) = f(x)z"+12=0 (mod z*+ 1)



Schinzel’ sExample:
(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Comment: For each n, the above polynomial isdivisible
by at |east one of

®p.(x) wherek € {2,3,4,6,12}.

n=0 (mod 2) — f(x)z" +12=0 (mod x+ 1)
n=2 (mod 3) = f(x)z"+12=0 (mod z*+x + 1)
n=1 (mod 4) = f(x)z"+12=0 (mod z*+ 1)
n=1 (mod 6) = f(x)z" +12=0 (mod z* — x + 1)



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Comment: For each n, the above polynomial isdivisible
by at |east one of

®p.(x) wherek € {2,3,4,6,12}.

n =0 (mod 2)
n =2 (mod 3)
n =1 (mod 4)
n =1 (mod 6)
n =3 (mod 12)

f(x)x" +12=0 (mod = + 1)
f(x)z" +12=0 (mod z*+ = + 1)
f(x)x" +12 =0 (mod z*+ 1)
f(x)z" +12=0 (mod z* — z + 1)
f(x)z" +12=0 (mod z* — z* + 1)

FEEE
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Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Theorem. Thereexistsan f(x) € Z[x] with non-negative
coefficientssuch that f (x)x" + 4 isreduciblefor al non-
negativeintegers n.

Comment: For each n, the second polynomial isdivisible
by at least one ®,.(x) where k divides some integer NV
having more than 1017 digits.



Schinzel’ sExample:

(52746254320 +82° + 923 + 622 +8x+3) ™ +12
Isreducible for all non-negativeintegers n

Theorem. Thereexistsan f(x) € Z[x] with non-negative
coefficientssuch that f (x)x" + 4 isreduciblefor al non-
negativeintegers n.

Comment: For each n, the second polynomial isdivisible
by at least one ® 4. (x) where k divides

2436750334086348800 341 531 7371 12913231716191823232929313137374141 .



Schinzel’s Theorem: If thereisan f(x) € Z[x] such
that f(1) # —1 and f(x)x™ + 1 is reducible for all
non-negative integers n, then there is an odd covering of
the integers.
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Conjecture: There iIs an absolute constaritsuch that if
r
f(x) =) a;a’ €zl
3=0

then there is a

g(z) = bja’ € Z[x]
7=0

r
irreducible (overQ) such that) ~ |b; — a;| < C.

7=0
Comment: The conjecture remains open. If we tak
g(x) = ?:0 bjx) € Z[x] where possiblys > r,
then the problem has been resolved by Schinzel.
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First Attack on Tur an’s Problem:

ldea: Consider

g(z) = =" + f(x).
If £(0) =0o0r f(1) = —1, then consider instead
g(x) =x" + f(x) £ 1.
If one can showy(x) is irreducible for somer, then the

conjecture of Tuain (modified sadegg > deg f is al-
lowed) Is resolved witlC' = 2.

Problem: Dealing withg(x) = =™ + f(x) is essentially
equivalent to the odd covering problem. So this is hard.




Second Attack on Turan’

ldea: Consider

s Problem:

g(x) =2+ 2" + f(x).
If £(0) = 0, then consider instead

g(x) = 2™ 4

-2 + f(x) -

- 1.
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Theorem (Schinzel): For every

f(z) =D ajzl € Z[x],

7=0
there exist infinitely many irreducible

g(z) = Y bzl € Z[z]
7=0

such that
maxir,s} 2 if £(0) # 0
> laj—b; <
— 3 always.
J:

One of these iIs such that
s < exp ((5r + (| £ + 3)).
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ldeas Behind Proof:

» ConsiderF'(x) = ™ + ™ 4+ f(x) with m &
(M,2M] andn € (IN,2N] whereM and N
are large andvi > N.

» Apply result onu(x)x" + v(x) with u(x) = 1
andv(x) = x™ + f(x) to reduce problem to
consideration of reciprocal factors.

» Find a bound on the number af™ + =™ 4+ f(x)
with reciprocal non-cyclotomic factors.
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and letA, C A (arising from wherF(Cpk) = 0).
Use a “sieve” argument to estimate the size of

A— ] Ap.



ldeas Behind Proof:

» To bound thex™ + x™ + f(x) with cyclotomic
factors, set

A={(m,n):M<m<2M,N<n<2N},

and letA, C A (arising from wherF(Cpk) = 0).
Use a “sieve” argument to estimate the size of

A— ] Ap.

» Deduce that som#'(x) = =™ +x" + f(x) with
m € (M,2M] andn € (IN,2N] is irreducible
(whereM and N are large andvi > N).



Current Knowledge:

.
Theorem: Given f(z) = » ajaz? € Z[z], there are
j=0

S
infinitely many irreducibleg(x) = ija:j € Z|x]
7=0

such that max{r,s}

). laj—bj <5

7=0
One of these Is such that

s < 4r exp (4||f||2—|—12).
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Theorem: Given f(z) = » ajaz? € Z[z], there are
j=0

S
infinitely many irreducibleg(x) = ija:j € Z|x]
7=0

such that max{r,s}

Y. laj—bj| <5

7=0
One of these Is such that

s < 4r exp (4||f||2—|—12).



Current Knowledge:

.
Theorem: Given f(z) = » ajaz? € Z[z], there are
j=0

S
infinitely many irreducibleg(x) = ija:j € Z|x]
7=0

such that max{r,s}

). laj—bj <3

7=0
One of these Is such that

s < some polynomial inr.
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