## MATH 788F TEST

(1) Let

$$f(x) = 45x^8 - 30x^7 - 15x^6 - 2x^4 + 30x^2 + 150.$$

Using Newton polygons, explain why f(x) is irreducible. Below are two Newton polygons to get you started. You may want to use others.



Newton polygon of f(x) with respect to 2



Newton polygon of f(x) with respect to 3

- (2) Let  $f(x) = x^3 + k$  where k is an arbitrary integer. Suppose that f(x) is Eisenstein with respect to a prime p. Prove that either p = 3 or p is a divisor of k.
- (3) Let  $m = p^2 + p 2$ . Recall that  $p\widetilde{B}_m(x) = \sum_{j=0}^m pB_j\binom{m}{j}$ . Explain why each of the coefficients  $pB_j\binom{m}{j}$  for  $1 \le j \le m-1$  is a rational number which, when reduced, has its numerator divisible by p. (I am *not* asking you to prove  $p\widetilde{B}_m(x)$  is a rational number times an Eisenstein polynomial. I am, however, asking you to give part of a proof that  $p\widetilde{B}_m(x)$  is a rational number times an Eisenstein polynomial.)
- (4) Let  $d_n d_{n-1} \dots d_0$  be the decimal representation of a product of three primes. Let  $f(x) = \sum_{j=0}^n d_j x^j$ . Prove that f(x) is the product of at most three irreducible polynomials. In other words, show that if  $f(x) = f_1(x)f_2(x)f_3(x)f_4(x)$  where each  $f_j(x) \in \mathbb{Z}[x]$ , then  $f_j(x) \equiv \pm 1$  for at least one  $j \in \{1, 2, 3, 4\}$ . Prove any lemmas from class you use except you may use Lemma 5, without proof, given in the handout.
- (5) Let  $f(x) = \sum_{j=0}^{n} a_j x^j$  where  $a_n = 1, a_{n-1} = 0$ , and  $a_{n-2} > 1 + |a_{n-3}| + |a_{n-4}| + \dots + |a_1| + |a_0|.$

Thus,  $a_{n-2}$  is positive and greater than the sum of the absolute values of the other coefficients.

- (a) Show that f(x) has exactly two roots (counting multiplicity) with absolute values  $\geq 1$ .
- (b) Show that f(x) has no real roots with absolute value  $\geq 1$ . (Hint: If  $z \in \mathbb{R}$ , then the terms  $a_n z^n$  and  $a_{n-2} z^{n-2}$  have the same sign. Also, the inequality in this problem is mighty strong.)
- (c) Explain why f(x) is irreducible.