6 The Transcendence of e and π

For this section and the next, we will make use of

$$
I(t)=\int_{0}^{t} e^{t-u} f(u) d u
$$

where t is a complex number and $f(x)$ is a polynomial with complex coefficients to be specified later (depending on the application). Integration by parts gives

$$
\begin{equation*}
I(t)=e^{t} \sum_{j=0}^{\infty} f^{(j)}(0)-\sum_{j=0}^{\infty} f^{(j)}(t)=e^{t} \sum_{j=0}^{n} f^{(j)}(0)-\sum_{j=0}^{n} f^{(j)}(t), \tag{8}
\end{equation*}
$$

where n is the degree of $f(x)$. If $f(x)=\sum_{j=0}^{n} a_{j} x^{j}$, we set

$$
\bar{f}(x)=\sum_{j=0}^{n}\left|a_{j}\right| x^{j}
$$

Then

$$
|I(t)| \leq\left|\int_{0}^{t}\right| e^{t-u} f(u)|d u| \leq|t| \max \left\{\left|e^{t-u}\right|\right\} \max \{|f(u)|\} \leq|t| e^{|t|} \bar{f}(|t|)
$$

Theorem 16. The number e is transcendental.
Proof. Assume e is a root of

$$
g(x)=b_{0}+b_{1} x+\cdots+b_{r} x^{r} \in \mathbb{Z}[x],
$$

where $b_{0} \neq 0$. Let p be a prime $>\max \left\{r,\left|b_{0}\right|\right\}$, and define

$$
f(x)=x^{p-1}(x-1)^{p}(x-2)^{p} \cdots(x-r)^{p} .
$$

Consider

$$
J=b_{0} I(0)+b_{1} I(1)+\cdots+b_{r} I(r)
$$

Since $g(e)=0$, the contribution of the first summand on the right-hand side of (8) to J is 0 . Thus,

$$
J=-\sum_{k=0}^{r} \sum_{j=0}^{n} b_{k} f^{(j)}(k),
$$

where $n=(r+1) p-1$. The definition of $f(x)$ implies that many of the terms above are zero, and we can write

$$
J=-\sum_{j=p-1}^{n} b_{0} f^{(j)}(0)+\sum_{k=1}^{r} \sum_{j=p}^{n} b_{k} f^{(j)}(k) .
$$

Each of the terms on the right is divisible by p ! except for

$$
f^{p-1}(0)=(p-1)!(-1)^{r p}(r!)^{p}
$$

where we have used that $p>r$. Thus, since $p>\left|b_{0}\right|$ as well, we see that J is an integer which is divisible by $(p-1)$! but not by p. In other words, J is an integer with

$$
|J| \geq(p-1)!.
$$

Since

$$
\bar{f}(k)=k^{p-1}(k+1)^{p}(k+2)^{p} \cdots(k+r)^{p} \leq(2 r)^{n} \quad \text { for } 0 \leq k \leq r,
$$

we deduce that

$$
|J| \leq \sum_{j=0}^{r}\left|b_{j}\right||I(j)| \leq \sum_{j=0}^{r}\left|b_{j}\right| j e^{j} \bar{f}(j) \leq c\left((2 r)^{(r+1)}\right)^{p},
$$

where c is a constant independent of p. This gives a contradiction and establishes the theorem.
It helps to be aware of the following lemmas.
Lemma 1. If α and β are algebraic numbers, then so are $\alpha \pm \beta, \alpha \beta$, and α / β (if $\beta \neq 0$). If α and β are algebraic integers, then so are $\alpha \pm \beta$ and $\alpha \beta$.

Lemma 2. If α is an algebraic number with minimum polynomial $g(x) \in \mathbb{Z}[x]$ and if b is the leading coefficient of $g(x)$, then b α is an algebraic integer.

Lemma 3. If α is an algebraic integer and α is rational, then α is a rational integer.
In addition, it would be helpful to be familiar with the fundamental theorem of elementary symmetric functions.

Theorem 17. The number π is transcendental.
Proof. Observe that if π were algebraic, then $i \pi$ would be as well (which we can see by using Lemma 1 or by observing that if $f(x) \in \mathbb{Z}[x]$ and $f(\pi)=0$, then $g(x)=f(i x) f(-i x) \in \mathbb{Z}[x]$ and $g(i \pi)=0$). It suffices therefore to show that $\theta=i \pi$ is transcendental. Assume otherwise. Let r be the degree of the minimal polynomial $g(x)$ for θ, and let $\theta_{1}=\theta, \theta_{2}, \ldots, \theta_{r}$ denote the conjugates of θ. Let b denote the leading coefficient of $g(x)$. In particular, we will use momentarily that $b \theta_{j}$ is an algebraic integer (see Lemma 2). Since $e^{i \pi}=-1$, we deduce that

$$
\left(1+e^{\theta_{1}}\right)\left(1+e^{\theta_{2}}\right) \cdots\left(1+e^{\theta_{r}}\right)=0
$$

Multiplying the above expression on the left out, we obtain a sum of 2^{r} terms of the form e^{ϕ} where $\phi=\epsilon_{1} \theta_{1}+\cdots+\epsilon_{r} \theta_{r}$ with $\epsilon_{j} \in\{0,1\}$ for all j. Let $\phi_{1}, \ldots, \phi_{n}$ denote the non-zero expressions of this form so that (since the remaining $2^{r}-n$ values of ϕ are 0)

$$
q+e^{\phi_{1}}+\cdots+e^{\phi_{n}}=0
$$

where $q=2^{r}-n$. Let p be a large prime, and let

$$
f(x)=b^{n p} x^{p-1}\left(x-\phi_{1}\right)^{p} \cdots\left(x-\phi_{n}\right)^{p} .
$$

By the fundamental theorem of elementary symmetric functions and Lemma 2 and Lemma 3, $f(x) \in \mathbb{Z}[x]$; to see this more clearly, consider $\phi_{1}, \ldots, \phi_{2^{r}}$ as the complete set of ϕ 's as above (so the first n are still the non-zero ones) and use that

$$
\prod_{j=1}^{2^{r}}\left(x-\phi_{j}\right)=x^{2^{r}-n} \prod_{j=1}^{n}\left(x-\phi_{j}\right)
$$

is symmetric in $\theta_{1}, \ldots, \theta_{r}$. Define

$$
J=I\left(\phi_{1}\right)+\cdots+I\left(\phi_{n}\right) .
$$

From (8), we deduce that

$$
J=-q \sum_{j=0}^{m} f^{(j)}(0)-\sum_{j=0}^{m} \sum_{k=1}^{n} f^{(j)}\left(\phi_{k}\right)
$$

where $m=(n+1) p-1$. Observe that the sum over k is a symmetric polynomial in $b \phi_{1}, \ldots, b \phi_{n}$ with integer coefficients and thus a symmetric polynomial with integer coefficients in the 2^{r} numbers $b \phi=b\left(\epsilon_{1} \theta_{1}+\cdots+\epsilon_{r} \theta_{r}\right)$. Hence, by the fundamental theorem of elementary symmetric functions, we obtain that this sum is a rational number. Observe that Lemma 2 and Lemma 3 imply that the sum is furthermore a rational integer. Since $f^{(j)}\left(\phi_{k}\right)=0$ for $j<p$, we deduce that the double sum in the expression for J above is a rational integer divisible by $p!$. Observe that $f^{(j)}(0)=0$ for $j<p-1$ and $f^{(j)}(0)$ is divisible by $p!$ for $j \geq p$. Also,

$$
f^{(p-1)}(0)=b^{n p}(-1)^{n p}(p-1)!\left(\phi_{1} \cdots \phi_{n}\right)^{p} .
$$

From the fundamental theorem of elementary symmetric functions and Lemma 2 and Lemma 3, we deduce that $f^{(p-1)}(0)$ is a rational integer divisible by $(p-1)$!. Furthermore, if p is sufficiently large, then $f^{(p-1)}(0)$ is not divisible by p. If p is also $>q$, we deduce that

$$
|J| \geq(p-1)!.
$$

On the other hand, using the upper bound we obtained for $|I(t)|$, we have

$$
|J| \leq \sum_{k=1}^{n}\left|\phi_{k}\right| e^{\left|\phi_{k}\right|} \bar{f}\left(\left|\phi_{k}\right|\right) \leq c_{1} c_{2}^{p}
$$

for some constants c_{1} and c_{2}. We get a contradiction, completing the proof.

