
6 The Transcendence ofe and π

For this section and the next, we will make use of

I(t) =

∫ t

0

et−uf(u) du,

wheret is a complex number andf(x) is a polynomial with complex coefficients to be specified
later (depending on the application). Integration by parts gives

I(t) = et

∞∑
j=0

f (j)(0)−
∞∑

j=0

f (j)(t) = et

n∑
j=0

f (j)(0)−
n∑

j=0

f (j)(t), (8)

wheren is the degree off(x). If f(x) =
∑n

j=0 ajx
j, we set

f(x) =
n∑

j=0

|aj|xj.

Then

|I(t)| ≤
∣∣∣∣∫ t

0

|et−uf(u)| du

∣∣∣∣ ≤ |t|max{|et−u|}max{|f(u)|} ≤ |t|e|t|f(|t|).

Theorem 16. The numbere is transcendental.

Proof. Assumee is a root of

g(x) = b0 + b1x + · · ·+ brx
r ∈ Z[x],

whereb0 6= 0. Let p be a prime> max{r, |b0|}, and define

f(x) = xp−1(x− 1)p(x− 2)p · · · (x− r)p.

Consider
J = b0I(0) + b1I(1) + · · ·+ brI(r).

Sinceg(e) = 0, the contribution of the first summand on the right-hand side of (8) toJ is 0. Thus,

J = −
r∑

k=0

n∑
j=0

bkf
(j)(k),

wheren = (r + 1)p− 1. The definition off(x) implies that many of the terms above are zero, and
we can write

J = −
n∑

j=p−1

b0f
(j)(0) +

r∑
k=1

n∑
j=p

bkf
(j)(k).

Each of the terms on the right is divisible byp! except for

fp−1(0) = (p− 1)!(−1)rp(r!)p,
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where we have used thatp > r. Thus, sincep > |b0| as well, we see thatJ is an integer which is
divisible by(p− 1)! but not byp. In other words,J is an integer with

|J | ≥ (p− 1)!.

Since
f(k) = kp−1(k + 1)p(k + 2)p · · · (k + r)p ≤ (2r)n for 0 ≤ k ≤ r,

we deduce that

|J | ≤
r∑

j=0

|bj||I(j)| ≤
r∑

j=0

|bj|jejf(j) ≤ c
(
(2r)(r+1)

)p
,

wherec is a constant independent ofp. This gives a contradiction and establishes the theorem.

It helps to be aware of the following lemmas.

Lemma 1. If α andβ are algebraic numbers, then so areα± β, αβ, andα/β (if β 6= 0). If α and
β are algebraic integers, then so areα± β andαβ.

Lemma 2. If α is an algebraic number with minimum polynomialg(x) ∈ Z[x] and if b is the
leading coefficient ofg(x), thenbα is an algebraic integer.

Lemma 3. If α is an algebraic integer andα is rational, thenα is a rational integer.

In addition, it would be helpful to be familiar with the fundamental theorem of elementary
symmetric functions.

Theorem 17. The numberπ is transcendental.

Proof. Observe that ifπ were algebraic, theniπ would be as well (which we can see by using
Lemma 1 or by observing that iff(x) ∈ Z[x] andf(π) = 0, theng(x) = f(ix)f(−ix) ∈ Z[x] and
g(iπ) = 0). It suffices therefore to show thatθ = iπ is transcendental. Assume otherwise. Letr be
the degree of the minimal polynomialg(x) for θ, and letθ1 = θ, θ2, . . . , θr denote the conjugates
of θ. Let b denote the leading coefficient ofg(x). In particular, we will use momentarily thatbθj is
an algebraic integer (see Lemma 2). Sinceeiπ = −1, we deduce that

(1 + eθ1)(1 + eθ2) · · · (1 + eθr) = 0.

Multiplying the above expression on the left out, we obtain a sum of2r terms of the formeφ where
φ = ε1θ1 + · · ·+ εrθr with εj ∈ {0, 1} for all j. Let φ1, . . . , φn denote the non-zero expressions of
this form so that (since the remaining2r − n values ofφ are 0)

q + eφ1 + · · ·+ eφn = 0,

whereq = 2r − n. Let p be a large prime, and let

f(x) = bnpxp−1(x− φ1)
p · · · (x− φn)p.
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By the fundamental theorem of elementary symmetric functions and Lemma 2 and Lemma 3,
f(x) ∈ Z[x]; to see this more clearly, considerφ1, . . . , φ2r as the complete set ofφ’s as above (so
the firstn are still the non-zero ones) and use that

2r∏
j=1

(x− φj) = x2r−n

n∏
j=1

(x− φj)

is symmetric inθ1, . . . , θr. Define

J = I(φ1) + · · ·+ I(φn).

From (8), we deduce that

J = −q

m∑
j=0

f (j)(0)−
m∑

j=0

n∑
k=1

f (j)(φk)

wherem = (n + 1)p− 1. Observe that the sum overk is a symmetric polynomial inbφ1, . . . , bφn

with integer coefficients and thus a symmetric polynomial with integer coefficients in the2r num-
bersbφ = b(ε1θ1 + · · · + εrθr). Hence, by the fundamental theorem of elementary symmetric
functions, we obtain that this sum is a rational number. Observe that Lemma 2 and Lemma 3
imply that the sum is furthermore a rational integer. Sincef (j)(φk) = 0 for j < p, we deduce
that the double sum in the expression forJ above is a rational integer divisible byp!. Observe that
f (j)(0) = 0 for j < p− 1 andf (j)(0) is divisible byp! for j ≥ p. Also,

f (p−1)(0) = bnp(−1)np(p− 1)!(φ1 · · ·φn)p.

From the fundamental theorem of elementary symmetric functions and Lemma 2 and Lemma 3,
we deduce thatf (p−1)(0) is a rational integer divisible by(p− 1)!. Furthermore, ifp is sufficiently
large, thenf (p−1)(0) is not divisible byp. If p is also> q, we deduce that

|J | ≥ (p− 1)!.

On the other hand, using the upper bound we obtained for|I(t)|, we have

|J | ≤
n∑

k=1

|φk|e|φk|f(|φk|) ≤ c1c
p
2

for some constantsc1 andc2. We get a contradiction, completing the proof.
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