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§2.2 Eisenstein Polynomials

We say that a polynomial f(x) =
P

n

j=0 ajx
j 2 Z[x] is in Eisenstein form (with

respect to the prime p) if there is a prime p such that p - an, p|aj for j < n,
and p2 - a0. An Eisenstein polynomial is an f(x) 2 Z[x] for which there is an
integer a and a prime p such that f(x + a) is in Eisenstein form with respect
to the prime p. In other words, f(x) 2 Z[x] is Eisenstein if there is an integer
a and a prime p such that f(x + a) =

P
n

j=0 a
0
j
xj where p - a0

n
, p|a0

j
for j < n,

and p2 - a00. More specifically, we say that such an f(x) is Eisenstein with
respect to the prime p. For example, since f(x) = x2 + x + 1 is such that
f(x+ 1) = x2 + 3x+ 3, the polynomial f(x) is Eisenstein with respect to 3. It
follows easily from Theorem 2.1.1 that if f(x) is Eisenstein with respect to a
prime p, then f(x) is irreducible over Q (see Exercise (1.1)).

Suppose one is given an f(x) 2 Z[x] and wishes to decide whether f(x)
is Eisenstein with respect to some prime (which is not given). We assume
n = deg f(x) is at least 2. One approach to making such a decision involves
the use of discriminants or resultants. Our presentation here will be restricted
to resultants. Let f(x) =

P
n

j=0 ajx
j and g(x) =

P
r

j=0 bjx
j be in C[x] with

n � 1, r � 1 and anbr 6= 0. We define the resultant of f(x) and g(x) in terms of
the Sylvester determinant R(f, g) associated with f(x) and g(x). The resultant
R(f, g) is the determinant of an (n + r) ⇥ (n + r) matrix with the first r rows
consisting of the coe�cients of f(x), where each of these rows contains one
more leading 0 than its predecessor, and with the last n rows consisting of the
coe�cients of g(x), where each of these rows contains one more leading 0 than
its predecessor. Specifically, we have 1

(2.2.1) R(f, g) =

������������������

an an�1 an�2 . . . a0 0 0 . . . 0
0 an an�1 . . . a1 a0 0 . . . 0
0 0 an . . . a2 a1 a0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

br br�1 br�2 . . . b0 0 0 . . . 0
0 br br�1 . . . b1 b0 0 . . . 0
0 0 br . . . b2 b1 b0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

������������������

.

For example, if f(x) = x3 + x+1 and g(x) = 2x2 + x+3, then (2.2.1) becomes

R(f, g) =

����������

1 0 1 1 0
0 1 0 1 1
2 1 3 0 0
0 2 1 3 0
0 0 2 1 3

����������

.

1The appearance of the right-hand side of (2.2.1) is somewhat misleading. The entry a0
in the first row, for example, is not necessarily in the same column as the entry b0 in the first
row consisting of the bj ’s.
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Lemma 2.2.1. Let f(x) and g(x) 2 C[x], and suppose that there is an ↵ such
that f(↵) = g(↵) = 0. Then R(f, g) = 0.

Proof. Add to the ith row of the last column (the (n + r)th column) of the
determinant on the right-hand side of (2.2.1) the product of the entry in the
ith row and jth column with ↵n+r�j . Then the first r entries in the last
column become ↵r�1f(↵),↵r�2f(↵), . . . , f(↵) and the last n entries become
↵n�1g(↵),↵n�2g(↵), . . . , g(↵). By the conditions of the lemma, these are all 0,
and the result follows.

Before continuing, it is of interest to point out that the above proof can
be modified slightly to obtain another result of interest. We replace the role
of ↵ above with a variable x, adjusting the determinant in (2.2.1) so that the
right-most column consists of the entries

(2.2.2) xr�1f(x), xr�2f(x), . . . , f(x), xn�1g(x), xn�2g(x), . . . , g(x).

The other entries in (2.2.1) remain untouched and, hence, are coe�cients of the
polynomials f(x) and g(x). Call the (n + r) ⇥ (n + r) matrix associated with
this determinant A. Expanding detA along the right-most column, we obtain

(2.2.3) f(x)u(x) + g(x)v(x) = R(f, g),

for some polynomials u(x) and v(x) with deg u < deg g and deg v < deg f . Of
particular significance here is that if f(x) and g(x) are in Z[x], then (2.2.3) is
a linear combination of f(x) and g(x) in the ring Z[x]. In other words, in this
case, u(x) and v(x) in (2.2.3) are in Z[x]. The problem of finding the smallest
positive integer d that can be so represented as a linear combination of two
given relatively prime polynomials f(x) and g(x) in Z[x] is non-trivial. We will
examine this in a later chapter in the special context of f(x) and g(x) being
cyclotomic polynomials.

Of interest to us in (2.2.3) is the case that f(x) and g(x) are non-constant
polynomials and R(f, g) = 0 over the field of rationals or over the field of
arithmetic modulo a prime p. Denote the field by F . Our argument for (2.2.3)
still holds over F except that we would like to know that u(x) and v(x) are
not identically zero in our field. For this purpose, we observe that R(f, g) = 0
corresponds to detA = 0 which corresponds to the rows of A being linearly
dependent over F . Thus, if the jth row of A is the vector �!v j consisting of n+r
components, then there are cj 2 F not all zero such that

c1
�!v 1 + c2

�!v 2 + · · ·+ cn+r
�!v n+r =

�!
0 .

In particular, recalling that the entries in the last column of A are given by
(2.2.2), we see that (2.2.3) holds with

u(x) = c1x
r�1 + c2x

r�2 + · · ·+ cr
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and
v(x) = cr+1x

n�1 + cr+2x
n�2 + · · ·+ cr+n.

Here, we have u(x) and v(x) are in F [x], at least one of u(x) and v(x) is non-zero
(hence, both are), deg u < deg g and deg v < deg f . With such u(x) and v(x) in
hand, we are now ready to show the following (but note the cautionary remark
after the proof).

Lemma 2.2.2. Let f(x) and g(x) be two non-constant polynomials in the field
F of rational numbers or arithmetic modulo a prime p. If R(f, g) is zero in F ,
then f(x) and g(x) have an irreducible factor in common in F [x]. If further
deg g < deg f , then f(x) is reducible over F .

Proof. From (2.2.3) and R(f, g) = 0, we deduce f(x)u(x) = �g(x)v(x) in
F [x]. Since v(x) is non-zero with degree less than the degree of f(x), unique
factorization in F [x] implies the conclusions of the lemma.

To clarify, the polynomials in Lemma 2.2.2 are to be viewed as polynomials
in the field F . In particular, if one has polynomials f(x) and g(x) in Z[x] and
wishes to apply the lemma modulo a prime p, then the polynomials should be
reduced modulo p, possibly changing the degrees of the polynomials, before
computing R(f, g) with the Sylvester determinant and applying Lemma 2.2.2.
By way of an example, consider

f(x) = 2x3 + x2 + x+ 1 and g(x) = 2x2 + x+ 1.

In this case, one can check that R(f, g) = 8 = 23. Observe, however, that f(x)
and g(x) do not have an irreducible factor in common modulo 2. Indeed, we
have

f(x) ⌘ x2 + x+ 1 (mod 2), g(x) ⌘ x+ 1 (mod 2)

and
R(x2 + x+ 1, x+ 1) = 1.

If ↵1, . . . ,↵n are the roots of f(x), one can show that

(2.2.4) R(f, g) = ar
n
g(↵1) · · · g(↵n).

The proof can be found in Uspensky (1948). Observe that (2.2.4) implies Lemma
2.2.1 and also the converse of Lemma 2.2.1. Thus, if R(f, g) = 0, then f(x) and
g(x) have a complex root in common. With the cautionary notes of the previous
paragraph, we can view Lemma 2.2.2 as a consequence of (2.2.4).

We now show that the following algorithm works to determine whether a
given polynomial f(x) is Eisenstein.

Algorithm: Suppose that f(x) 2 Z[x] is of degree n � 2. Calculate R(f, f 0)
(using the right-hand side of (2.2.1)). If R(f, f 0) = 0, then f(x) is not Eisen-
stein with respect to any prime. If R(f, f 0) 6= 0, then factor it. For each
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prime p dividing R(f, f 0), check to see if any of the translates f(x + a), where
a 2 {0, 1, ..., p� 1}, is in Eisenstein form with respect to the prime p. If such a
prime p and such an a are such that f(x+ a) is in Eisenstein form with respect
to p, then f(x) is Eisenstein with respect to p. If no such prime p and no such
a are such that f(x + a) is in Eisenstein form with respect to p, then f(x) is
not Eisenstein with respect to any prime.

In justifying the algorithm, we explain how one can use the resultant R(f, f 0)
to determine whether a polynomial f(x) has a multiple factor (a factor which
appears with multiplicity > 1) modulo some prime (which is unspecified). To
see this, suppose that there is a prime p such that

(2.2.5) f(x) ⌘ g(x)2h(x) (mod p)

where g(x) is of degree � 1. Note that if for some integer a we have that
f(x+a) is in Eisenstein form with respect to the prime p, then f(x) ⌘ an(x�a)n

(mod p) so that one can take g(x) = x�a. Define f1(x) = g(x)2h(x) so that the
coe�cients of f(x) and of f 0(x) are the same as the corresponding coe�cients
of f1(x) and f 0

1(x) all considered modulo p. In particular, R(f, f 0) ⌘ R(f1, f 0
1)

(mod p). Since

f 0
1(x) = 2g(x)g0(x)h(x) + g(x)2h0(x) = g(x) (2g0(x)h(x) + g(x)h0(x)) ,

we get that each root of g(x) is a root of f1(x) and of f 0
1(x). By Lemma 2.2.1, we

get that R(f1, f 0
1) = 0. Hence, R(f, f 0) ⌘ 0 (mod p). Thus, p divides R(f, f 0);

and to determine if (2.2.5) holds for some prime p, we simply need to check
whether it holds for each prime divisor p of R(f, f 0). The fact that the algorithm
works when R(f, f 0) 6= 0 is now fairly straight forward, but we need to justify
that we can restrict our consideration of integers a to a 2 {0, 1, . . . , p� 1}. For
this purpose, we suppose that b is an integer for which f(x+ b) is in Eisenstein
form with respect to some prime p and show that f(x+ a) is also for any a ⌘ b
(mod p). Since f(x+ b) ⌘ f(x+ a) (mod p), we simply need to justify that p2

does not divide the constant term in f(x+ a). In other words, we want to show
that p2 - f(a). Writing f(x + b) =

P
n

j=0 a
0
j
xj , we get that p|a0

j
for j < n and

p2 - a00. Writing a = kp+ b where k is an integer, we get that

f(a) ⌘ f(kp+ b) ⌘
nX

j=0

a0
j
kjpj ⌘ kpa01 + a00 ⌘ a00 (mod p2).

Thus, f(a) 6⌘ 0 (mod p2), completing what we set out to show (for the case
R(f, f 0) 6= 0).

If R(f, f 0) = 0, the above all works except that every prime is a prime divisor
of R(f, f 0) so it is not reasonable to consider all the prime divisors of R(f, f 0).
But observe that (2.2.4) implies that f(x) and f 0(x) have a root in common.
Hence, in this case, f(x) must have a multiple root (the reader should justify
this) so that f(x) is reducible (see Exercise (1.8)). Alternatively, Lemma 2.2.2
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implies that f(x) is reducible over Q. In particular, by Theorem 2.1.1, we can
conclude that f(x) cannot be Eisenstein with respect to any prime.

Example: Consider f(x) = x4 + 2x � 1, and suppose that we wish to find
every prime p such that f(x) is Eisenstein with respect to p. We first calculate
R(f, f 0) by using (2.2.1). To do this somewhat e�ciently, we multiply below
the first row by �4 and add it to the fourth row. Observe that we will get the
same result in the fifth row with an extra leading 0 if we multiply the second
row by �4 and add it to the fifth row. Similarly, we can obtain the same result
in the sixth row (as the fourth row) with 2 extra leading 0’s by considering the
third row. We get that

R(f, f 0) =

��������������

1 0 0 2 �1 0 0
0 1 0 0 2 �1 0
0 0 1 0 0 2 �1
4 0 0 2 0 0 0
0 4 0 0 2 0 0
0 0 4 0 0 2 0
0 0 0 4 0 0 2

��������������

=

��������������

1 0 0 2 �1 0 0
0 1 0 0 2 �1 0
0 0 1 0 0 2 �1
0 0 0 �6 4 0 0
0 0 0 0 �6 4 0
0 0 0 0 0 �6 4
0 0 0 4 0 0 2

��������������

.

A direct computation now gives

R(f, f 0) =

��������

�6 4 0 0
0 �6 4 0
0 0 �6 4
4 0 0 2

��������
= �6⇥ 72� 4⇥ 64 = �688.

Since 688 = 24 ⇥ 43, we only need to deal with the primes 2 and 43. We
make use of Exercise (2.6). Observe that 2 divides f(1), and so we consider
f(x+1) = x4+4x3+6x2+6x+2. Thus, f(x) is Eisenstein with respect to the
prime 2 (and, hence, f(x) is irreducible). Observe that 43 divides f(3) but that
f 0(3) = 4 ⇥ 27 + 2 = 110 is not divisible by 43. Thus, f(x) is not Eisenstein
with respect to the prime 43. Hence, 2 is the only prime p such that f(x) is
Eisenstein with respect to p. Alternatively, we note that Exercise (2.13) could
have been used to determine that f(x) is not Eisenstein with respect to 43.

In this section, we have considered the problem of determining whether a
polynomial f(x) 2 Z[x] can under a translation be shown to be irreducible by
the Schönemann-Eisenstein criterion. In general, if f(x) and g(x) 2 Z[x] and
f(g(x)) is irreducible, then f(x) is irreducible; hence, it is reasonable to attempt
to determine whether a given f(x) is irreducible by applying the Schönemann-
Eisenstein criterion after composing f(x) with another polynomial. We leave
further consideration of this idea as an exercise (Exercise (2.10)).


