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Find the critical points of the function
f(z,y) = 3z + zy?
where(x, y) is restricted to points in the set
S = {(xz,y) : 2 + y* < 9}.
Also, determine the maximum and the minimum values

f(x,y) in S as well as all pointgx, y) where these ex
treme values occur.
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The maximum is 16/ and it occurs at(2, ++/5)

The minimum is —16 and it occurs at(—2, +=+/5).
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Let

f(z,y) = z* + dzy + zy°.
The function f(x, y) has 3 critical points. Calculate th
three critical points and indicate (with justification) whetf
each determines a local maximum valueféfc, y), a local
minimum value off (x, y), or a saddle point of (x, y).
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e Computing a directional derivative requireart vector.

e The largest value of the directional derivative at a pc
s |V f| at that point.

e The direction giving this largest value is in the directi
of Vf.

e The gradient at a point on a surfaBe= 0 is perpendic-
ular to the tangent plane there.

e \When taking limits, every direction counts but some
rections might count more than others.

e Think polar coordinates with limits (8%, y) — (0, 0)).
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Quick Overview:

olf D > 0 and fzr < 0, then we've located a loca
maximum.

o If D < 0, then we've located a saddle point.

e | promise to look at the first two sections of Chapter
(a little).

e | will not study Lagrange multipliers.



