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Definition: Let C be a curve in thexy-plane (sayx =

x(t) andy = y(t) with a ≤ t ≤ b). Then theline
integral, denoted ∫

C
f(x, y) ds,

is the area of the region directly above this curve and below
the surfacez = f(x, y).
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Green’s Theorem: Let C be a piecewise smooth, simple
closed curve having a counterclockwise orientation that
forms the boundary of a regionS in the xy-plane.
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forms the boundary of a regionS in the xy-plane. If
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tives onS and its boundaryC, then∮

C
M(x, y) dx + N(x, y) dy

=

∫∫
S

(
∂N

∂x
−

∂M

∂y

)
dA.


