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GREEN’'S THEOREM - VERY QUICK



Definition: Let C be a curve in thecy-plane (sayx =
x(t) andy = y(t) witha < t < b). Then theline
Integral, denoted

/C f(x,y) ds,

IS the area of the region directly above this curve and bel
the surfacez = f(x, y).
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Green’s Theorem: Let C be a piecewise smooth, simpl
closed curve having a counterclockwise orientation ti
forms the boundary of a regiof in the xzy-plane.



Green’s Theorem: Let C be a piecewise smooth, simpl
closed curve having a counterclockwise orientation ti
forms the boundary of a regio§ in the xzy-plane. If
M (x,y) and N (x,y) have continuous partial deriva
tives onS and its boundarg, then
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