
Old Math 241 Test 3’s

Some 1992 Solutions:

1. (a)
∫ 1

0

∫ y2

y

y dx dy =

∫ 1

0

yx
∣∣∣y2
x=y

dy =

∫ 1

0

(y3 − y2) dy =
y4

4
− y3

3

∣∣∣1
0

=
1

4
− 1

3
=
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(b)
∫ π

0

∫ 2

0

sin θ dr dθ =

∫ π

0

(sin θ) r
∣∣∣2
r=0

dθ =

∫ π

0

2 sin θ dθ = −2 cos θ
∣∣∣π
0

= 2 + 2 = 4

(c) The region of integration is above the x-axis, to the right of y = x2 and to the left of x = 1.
Changing the order of integration gives∫ 1

0

∫ x2

0

ex
3

dy dx =

∫ 1

0

ex
3

y

∣∣∣∣x2

y=0

dx =

∫ 1

0

x2ex
3

dx =
ex

3

3

∣∣∣∣1
0

=
e− 1

3
.

Note that the last integral can be done by the u-substitution u = x3.

3. From r =
√
x2 + y2, one gets r =

√
3 + 1 = 2. Since x > 0 and y < 0 in this problem,

the angle θ is in the interval (3π/2, 2π). As tan−1(y/x) = tan−1(−1/
√

3) = −π/6, we get
θ = 11π/6. Therefore, (r, θ, z) = (2, 11π/6,−2). From ρ =

√
x2 + y2 + z2, one gets ρ =√

3 + 1 + 4 = 2
√

2. From z = ρ cosφ, we now get φ = cos−1(z/ρ) = cos−1(−1/
√

2) = 3π/4.
Thus, (ρ, φ, θ) = (2

√
2, 3π/4, 11π/6). Note that our current text (Spring, 2009) labels spherical

coordinates as (ρ, θ, φ) instead of (ρ, φ, θ). The notation varies from book to book.

4. The region of integration is one-eighth of the circle x2 + y2 = 2 lying between y-axis and the line
y = x in the first quadrant. Using x2 + y2 = r2 and dy dx = r dr dθ leads to∫ π/2

π/4

∫ √2

0

r3 · r dr dθ =

∫ π/2

π/4

r5

5

∣∣∣∣
√

2

0

dθ =
25/2

5

∫ π/2

π/4

dθ =
25/2π

20
=

√
2π

5
.

5. Recalling that z = ρ cosφ and
√
x2 + y2 = r = ρ sinφ, the equation z =

√
x2 + y2/

√
3 can be

written in spherical coordinates as ρ cosφ = (ρ sinφ)/
√

3. Rewriting this, we get tanφ =
√

3 so
φ = π/3. The equation x2 + y2 + z2 = 4 can be written in spherical coordinates as ρ = 2. The
solid is above the cone φ = π/3 and below the sphere ρ = 2. The volume is∫ 2π

0

∫ π/3

0

∫ 2

0

ρ2 sinφ dρ dφ dθ.

6. The triple integral is over the solid above the quarter circle x2 + y2 = 1 in the xy-plane and below
the cone z =

√
x2 + y2. Converting to cylindrical coordinates gives∫ π/2

0

∫ 1

0

∫ r

0

1

r2
r dz dr dθ =

∫ π/2

0

∫ 1

0

∫ r

0

1

r
dz dr dθ =

∫ π/2

0

∫ 1

0

z

r

∣∣∣∣r
0

dr dθ

=

∫ π/2

0

∫ 1

0

dr dθ =

∫ π/2

0

r

∣∣∣∣1
0

dθ =

∫ π/2

0

dθ =
π

2
.



Some 1994 Solutions:

1. (c) The region is in the first quadrant above the y = x2 and below the line y = π2. Changing the
order of integration gives∫ π2

0

∫ √y
0

sin
√
y

y
dx dy =

∫ π2

0

sin
√
y

y
· x
∣∣∣∣
√
y

0

dy =

∫ π2

0

sin
√
y

√
y

dy.

For this last integral, use the substitution u =
√
y so that du = dy/(2

√
y) or 2du = (1/

√
y)dy.

Since
∫

2 sinu du = −2 cosu + C, we get that the above integral is equal to −2 cos
√
y
∣∣∣π2

0
=

−2 cosπ + 2 cos 0 = 4.

3. We have r =
√
x2 + y2 =

√
1 + 1 =

√
2. Since x > 0 and y > 0 in this problem, the angle

θ is in the interval (0, π/2). As tan−1(y/x) = tan−1(1) = π/4, we get θ = π/4. Therefore,
(r, θ, z) = (

√
2, π/4,

√
6). Here, ρ =

√
x2 + y2 + z2 =

√
1 + 1 + 6 = 2

√
2. From z = ρ cosφ,

we get φ = cos−1(z/ρ) = cos−1(
√

3/2) = π/6. Thus, (ρ, φ, θ) = (2
√

2, π/6, π/4).

4. The integration is over the semicircular region to the right of the y-axis and inside x2 + y2 = 16.
Replacing x2 + y2 with r2 and dx dy with r dr dθ, we get∫ π/2

−π/2

∫ 4

0

er
2

r dr dθ =

∫ π/2

−π/2

er
2

2

∣∣∣∣4
0

dθ =
e16 − 1

2

∫ π/2

−π/2
dθ =

(e16 − 1)π

2
.

5. The equation x2 + y2 + z2 = 9 is equivalent to the spherical equation ρ = 3. The equation
z = −

√
x2 + y2 can be converted to spherical variables as ρ cosφ = −r = −ρ sinφ which is the

same as tanφ = −1 or φ = 3π/4. Therefore, the solid is above the cone φ = 3π/4 and inside the
sphere ρ = 3. The volume is therefore∫ 2π

0

∫ 3π/4

0

∫ 3

0

ρ2 sinφ dρ dφ dθ.

6. The presence of numerous occurrences of x2 + y2 indicate that we should convert to cylindrical
coordinates. The limits of integration for the variables x and y are over a complete circle of radius 3
centered at the origin. The triple integral is over this circle between the plane z = 4 and hemisphere
z =

√
25− x2 − y2. The equation z =

√
25− x2 − y2 in cylindrical coordinates is the same as

z =
√

25− r2. Therefore, the triple integral can be written as∫ 2π

0

∫ 3

0

∫ √25−r2

4

sin r

r(
√

25− r2 − 4)
r dz dr dθ =

∫ 2π

0

∫ 3

0

sin r

r(
√

25− r2 − 4)
rz

∣∣∣∣
√

25−r2

4

dr dθ

=

∫ 2π

0

∫ 3

0

sin r dr dθ =

∫ 2π

0

(− cos r)

∣∣∣∣3
0

dθ = (1− cos 3)

∫ 2π

0

dθ = 2π(1− cos 3).

Formally, the above looks sound and is what was expected, but the integral actually requires a little
bit more care as the denominator of the integrand of the triple integral is zero when r = 3.



Some 1998 Solutions:

1. (c) The double integral is over the triangle above y = x and below y = π/2 in the first quadrant.
Changing the order of integration, we get∫ π/2

0

∫ y

0

cosx√
1 + cos y

dx dy =

∫ π/2

0

sinx√
1 + cos y

∣∣∣∣y
0

dy

=

∫ π/2

0

sin y√
1 + cos y

dy = −2
√

1 + cos y

∣∣∣∣π/2
0

= 2(
√

2− 1).

The last integral can be done with a u-substitution, either u = 1 + cos y or u =
√

1 + cos y.

2. Here, r =
√
x2 + y2 =

√
1 + 0 = 1. Since tan−1 0 = 0 and x > 0, we get θ = 0 (note that

if the point were (x, y, z) = (−1, 0, 1), we would still have that tan−1(y/x) = tan−1 0 = 0 but,
since −1 < 0, we would get θ = π). So (r, θ, z) = (1, 0, 1). From ρ =

√
x2 + y2 + z2 =

√
2 and

φ = cos−1(z/ρ) = cos−1(1/
√

2) = π/4, we get (ρ, θ, φ) = (
√

2, 0, π/4).

4. The top of the solid is the paraboloid z = 4−x2− y2. Note
that the paraboloid intersects the xy-plane (the plane z = 0)
in the circle x2 +y2 = 4. The bottom of the solid is that part
of the circle x2 + y2 = 4 (and its interior) that lies below
y = 1 in the xy-plane. We get then that the volume can be
written as ∫ 1

0

∫ √4−y2

0

∫ 4−x2−y2

0

dz dx dy.

5. The limits on z don’t need to change. The integrals for x and y are over the semicircle in the
xy-plane that lies above the x-axis and below x2 + y2 = 1. Recalling that

√
x2 + y2 = r and

dz dx dy = r dz dr dθ, we can rewrite the triple integral in the problem as∫ π

0

∫ 1

0

∫ 2

−2

r2 dz dr dθ = 4

∫ π

0

∫ 1

0

r2 dr dθ = 4

∫ π

0

r3

3

∣∣∣∣1
0

dθ =
4

3

∫ π

0

dθ =
4π

3
.

6. The integration is over a hemisphere above the xy-plane of radius 2 centered at the origin. This
can be seen by observing the bottom of the solid is z = 0 (the xy-plane), the top of the solid is
x2 + y2 + z2 = 4, and the integration in the variables x and y is over the entire circle x2 + y2 ≤ 4
(where the sphere intersects the xy-plane). Recall x2 + y2 + z2 = ρ2. Also,

x2 + y2 = r2 = (ρ sinφ)2 = ρ2 sin2 φ.

Since sinφ ≥ 0, we have
√

sin2 φ = sinφ so that√
(x2 + y2)(x2 + y2 + z2) =

√
ρ2 sin2 φ · ρ2 =

√
ρ4 sin2 φ = ρ2 sinφ.



Since dz dy dx = ρ2 sinφ dρ dφ dθ, the triple integral in the problem is the same as∫ 2π

0

∫ π/2

0

∫ 2

0

1

ρ2 sinφ
ρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ π/2

0

∫ 2

0

dρ dφ dθ

= 2

∫ 2π

0

∫ π/2

0

dφ dθ = π

∫ 2π

0

dθ = 2π2.

This is another question where the denominator in the original integrand can be 0, so some care
should be given to understand what the above is really saying. This would not be expected of you.
But to clarify, in this case, one can fix ε > 0 and let Gε be the solid between the hemisphere above
the xy-plane of radius ε centered at the origin and the hemisphere above the xy-plane of radius 2
centered at the origin. Then the triple integral in the problem can be interpreted as

lim
ε→0

∫∫∫
Gε

dz dy dx√
(x2 + y2)(x2 + y2 + z2)

= lim
ε→0

∫ 2π

0

∫ π/2

0

∫ 2

ε

1

ρ2 sinφ
ρ2 sinφ dρ dφ dθ

= lim
ε→0

∫ 2π

0

∫ π/2

0

∫ 2

ε

dρ dφ dθ = lim
ε→0

(2− ε)
∫ 2π

0

∫ π/2

0

dφ dθ

= lim
ε→0

(2− ε)π
2

∫ 2π

0

dθ = lim
ε→0

(2− ε)π2 = 2π2.

Some 1999 Solutions:

1. (b)
∫ π

0

∫ 2

0

θ dr dθ =

∫ π

0

θ r
∣∣∣2
0
dθ =

∫ π

0

2θ dθ = θ2
∣∣∣π
0

= π2

(c) The double integral is over the region between x = y2 and x = 1. In this region, 0 ≤ x ≤ 1;
also, for each x, we have −

√
x ≤ y ≤

√
x. Changing the limits of integration therefore gives∫ 1

0

∫ √x
−
√
x

cos(x3/2) dy dx =

∫ 1

0

cos(x3/2)y

∣∣∣∣
√
x

−
√
x

dx

=

∫ 1

0

2x1/2 cos(x3/2) dx =
4

3
sin(x3/2)

∣∣∣∣1
0

=
4

3
sin(1).

2. (a) The double integral is over the triangle above the x-axis, below the line y = x and to the left of
x = 1. In this region, 0 ≤ y ≤ 1. For a fixed y, we have y ≤ x ≤ 1 (the curve on the left of the
triangle is x = y and the curve on the right is x = 1). The answer is therefore∫ 1

0

∫ 1

y

f(x, y) dx dy.

(b) The region of integration is in the first quadrant between the curves y = x3 and y = 1. Here,
0 ≤ y ≤ 1 and 0 ≤ x ≤ y1/3. Therefore, the integral is equivalent to∫ 1

0

∫ y1/3

0

f(x, y) dx dy.



3. (a) The region of integration can be split up into three smaller regions. One region is 0 ≤ x ≤
2 and 0 ≤ y ≤ 2, and the double integral over this region is the volume of a box with a 2 by 2
base and height 3 (the value of f(x, y) here). Another region is 0 ≤ x ≤ 2 and 2 < y ≤ 3, and
the double integral over this region is minus the volume of a 2 by 1 by 1 box (since f(x, y) = −1
here). The third region is 2 < x ≤ 3 and 0 ≤ y ≤ 3, and the double integral over this region is
the volume of a 1 by 3 by 2 box (since f(x, y) = 2 here). Hence, the value ofthe double integral is
2 · 2 · 3− 2 · 1 · 1 + 1 · 3 · 2 = 12− 2 + 6 = 16.

(b) The value of f(x, y) for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1 is 3. The value of f(x, y) for 2 < x ≤ 3
and 0 ≤ y ≤ 1 is 2. Therefore, the double integral is the sum of the volume of a 2 by 1 by 3 box
and the volume of a 1 by 1 by 2 box. The value is 2 · 1 · 3 + 1 · 1 · 2 = 8.

4. Here, r =
√
x2 + y2 =

√
2 + 2 = 2 and (noting x and y are positive) θ = tan−1(

√
2/
√

2) =

tan−1(1) = π/4. Also, ρ =
√
x2 + y2 + z2 =

√
2 + 2 + 4 = 2

√
2 and φ = cos−1(z/ρ) =

cos−1(1/
√

2) = π/4. Therefore, (r, θ, z) = (2, π/4, 2) and (ρ, θ, φ) = (2
√

2, π/4, π/4).

5. The solid is a fourth of a cylinder lying in the first octant bounded by y2 + z2 = 4 and between the
planes x = 0 and x = 3. Note that the solid intersects the yz-plane in the points (y, z) lying in the
quarter circle y2 + z2 ≤ 4 where both y and z are positive. The volume can be expressed as∫ 2

0

∫ √4−y2

0

∫ 3

0

dx dz dy.

6. Any point (x0, y0, z0) that is on both surfaces satisfies z0 = x2
0 + y2

0 and x2
0 + y2

0 + z2
0 = 6. This

implies that 6 = x2
0 + y2

0 + z2
0 = z0 + z2

0 . So z2
0 + z0 − 6 = 0, which can be rewritten as

(z0 + 3)(z0 − 2) = 0. Thus, z0 = −3 or z0 = 2. Recalling that z0 = x2
0 + y2

0 , we see that z0 6= −3
(i.e., a negative number cannot be a sum of two nonnegative numbers). Therefore, z0 = 2. This
implies 2 = z0 = x2

0 + y2
0 . In fact, any point (x, y) on the circle x2 + y2 = 2 is such that (x, y)

satisfies both 2 = x2 + y2 and x2 + y2 + 22 = 6. Thus, the points (x, y) on the circle x2 + y2 = 2
are precisely the points (x, y, 2) that lie on both the surfaces z = x2 + y2 and x2 + y2 + z2 = 6 in
the problem. In other words, the paraboloid z = x2 + y2 opens upward and intersects the sphere
x2 + y2 + z2 = 6 above the points (x, y) in the xy-plane that are on the circle x2 + y2 = 2. The
solid will lie above this circle and its interior. So this is the region we want to integrate over in the
xy-plane. Converting to cylindrical coordinates, we get that the bottom surface is z = x2+y2 = r2

and the top surface is z =
√

6− (x2 + y2) =
√

6− r2. Hence, the volume can be expressed as∫ 2π

0

∫ √2

0

∫ √6−r2

r2
r dz dr dθ.

7. Observe that x2+y2+z2 = 1 and z = 0 (the xy-plane) intersect at the points satisfying x2+y2 = 1
in the xy-plane. The solid is a hemisphere centered at the origin of radius 1 above x2 + y2 ≤ 1 in
the xy-plane. Replacing (x2 + y2 + z2)3/2 in the integrand with (ρ2)3/2 = ρ3, and replacing dV



with ρ2 sinφ dρ dφ dθ allows us to rewrite the integral as∫ 2π

0

∫ π/2

0

∫ 1

0

ρ3 · ρ2 sinφ dρ dφ dθ =

∫ 2π

0

∫ π/2

0

(sinφ)
ρ6

6

∣∣∣∣1
0

dφ dθ

=
1

6

∫ 2π

0

∫ π/2

0

sinφ dφ dθ =
1

6

∫ 2π

0

(− cosφ)

∣∣∣∣π/2
0

dθ =
1

6

∫ 2π

0

dθ =
π

3
.

Some 2001, Spring, Solutions:

1. (c) Observe that y = (π/2)−x is the line with slope−1 intersecting both the x-axis and and y-axis
at π/2 (that is, at (π/2, 0) and (0, π/2)). The double integral is over the triangle below this line in
the first quadrant. Interchanging the order of integration results in the equivalent integral∫ π

2

0

∫ π
2
−y

0

x cos

((
π

2
− y
)3)

dx dy =

∫ π
2

0

cos

((
π

2
− y
)3)

x2

2

∣∣∣∣π2−y
0

dy

=
1

2

∫ π
2

0

cos

((
π

2
− y
)3)(

π

2
− y
)2

dy =
−1

6
sin

((
π

2
− y
)3)∣∣∣∣π2

0

=
1

6
sin

(
π3

8

)
.

The last integral above can be done with the u-substitution u =
(
(π/2) − y

)3 so that du =

−3
(
(π/2)− y

)2
dy.

2. Observe that x and y are negative. Since tan−1(y/x) = tan−1(1/
√

3) = π/6, we get that θ =
π + (π/6) = 7π/6. From r =

√
x2 + y2 =

√
(3/2) + (1/2) =

√
2, we obtain that (r, θ, z) =

(
√

2, 7π/6,−
√

2). Since ρ =
√
x2 + y2 + z2 =

√
(3/2) + (1/2) + 2 = 2 and φ = cos−1(z/ρ) =

cos−1(−
√

2/2) = 3π/4, we obtain (ρ, θ, φ) = (2, 7π/6, 3π/4).

3. Presumably, the intent here is that R = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 5} (the domain of f(x, y)).
This can be divided into the three regions suggested by the definition of f(x, y), namely

R1 = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}, R2 = {(x, y) : 0 ≤ x ≤ 2, 2 < y ≤ 5},

and
R3 = {(x, y) : 2 < x ≤ 3, 2 < y ≤ 5}.

This gives∫∫
R

f(x, y) dA =

∫∫
R1

f(x, y) dA+

∫∫
R2

f(x, y) dA+

∫∫
R3

f(x, y) dA

= −2 ·
∫ 3

0

∫ 2

0

dx dy + 0 ·
∫ 2

0

∫ 5

2

dx dy + 5 ·
∫ 3

2

∫ 5

2

dx dy = −2 · 6 + 0 · 6 + 5 · 3 = 3.



5. (a) The bottom of the solid is the quarter of the circle x2 + y2 ≤ 1 that
lies in the first quadrant of the xy-plane. The top of the solid is the
cylinder y2 + z2 = 2. Hence, the volume can be written as∫ 1

0

∫ √1−x2

0

∫ √2−y2

0

dz dy dx.

(b) For the quarter of the circle described in part (a), we have 0 ≤ θ ≤ π/2 and 0 ≤ r ≤ 1. Since
y = r sin θ in cylindrical coordinates, we obtain 2− y2 = 2− r2 sin2 θ. Thus, the triple integral in
cylindrical coordinates is ∫ π/2

0

∫ 1

0

∫ √2−r2 sin2 θ

0

r dz dr dθ.

6. Note that the inner integral goes from x = −
√

16− y2 − z2 to x =
√

16− y2 − z2. In other
words, it goes from the back side of the sphere x2 + y2 + z2 = 16 to the front side of it. The
remaining integrals are over the quarter circle in the yz-plane given by y2 + z2 ≤ 16 with y ≥ 0
and z ≥ 0. So the solid is the quarter of a sphere centered at the origin of radius 4 that lies above the
xy-plane and to the right of the xz-plane. Using x2+y2+z2 = ρ2 and dx dy dz = ρ2 sinφ dρ dφ dθ,
we can rewrite the given triple integral as∫ π

0

∫ π/2

0

∫ 4

0

(ρ2)7/2 ρ2 sinφ dρ dφ dθ =

∫ π

0

∫ π/2

0

∫ 4

0

ρ9 sinφ dρ dφ dθ

=

∫ π

0

∫ π/2

0

(sinφ)
ρ10

10

∣∣∣∣4
0

dφ dθ =
410

10

∫ π

0

∫ π/2

0

sinφ dφ dθ

=
410

10

∫ π

0

(− cosφ)

∣∣∣∣π/2
0

dθ =
410

10

∫ π

0

dθ =
410π

10
=

219π

5
.


