Old Math 241 Test 2’s

Some 1992 Solutions:

3. The chain rule gives

%7 az.%.@.@:yz\/gcos(x+y)-3~2'3w:18wy2\/§COS(l’+y)'

4. We want both 0z/0x and 0z /0y to be 0 at P. Calculating the partial derivatives, we obtain

B(x+y)r+(r+y)’+20-1=0 and 3(z+y)*zr=0.

The second equation gives that either x = 0 or y = —x. If = 0, then the first equation gives
y> —1 = 0sothaty = 1. If y = —x, then the first equation gives 2z — 1 = 0 so that z = 1/2 and
y = —x = —1/2. To get the z-coordinate of each point P, we plug in our values of x and y into

the equation z = (z +y)3z + 22 — x. We deduce that there are two such points P, namely (0, 1,0)
and (1/2,—1/2,—1/4).

5. Here, we have
fx — 21; _|_ 2fy —|— 27 fy e 2:[;‘ + 4y’ fxw = 27 fyy = 4 and fzy = 2

We want points where both f, = 0 and f, = 0. Since f, — f, = 2y — 2, we deduce y = 1. Taking
y = 1 in the equation 2z + 4y = 0, we get z = —2. As z = f(z,y),forx = —2 and y = 1, we
have z = —1. So there is one point, namely (—2, 1, —1), to consider for this problem. We have
D=2-4—-2%=4and f,, > 0, so there is a relative minimum at (—2, 1, —1).

6. Since f, = y* + 5 is never 0, there are no points inside the disk to consider, and we need only
consider the boundary. Using y*> = 4 — z? on the boundary, we deduce that if (z,y) is on the
boundary then f(x,y) = w(z) where

w(z)=az(4—2)+34—2?)+5x—5=—2>—32"+ 92 + 7.

Since 2% + y? = 4, we are interested in finding the extrema for w(z) with —2 < z < 2. As
w'(x) = =32 —6x+9 = —3(x —1)(z + 3) and —3 is not in the interval [—2, 2], we are interested
in w(z) for x € {—2, 1,2} (note that the endpoints of the interval [—2, 2] are included here). Since

w(—2) =8-12—1847 = —15, w(1) = —1—3+9+7 = 12, and w(2) = —8 — 12+ 18+7 = 5,

we deduce that the (global) maximum value is 12 and the (global) minimum value is —15.

Some 1994 Solutions:

1. Since f(0,y) = 0, the function approaches (indeed equals) 0 as (x, y) approaches the origin along
the line x = 0 (the y-axis). Since f(z,x) = 1/2, the function approaches (indeed equals) 1/2 as
(x,y) approaches the origin along the line y = z. Since 0 # 1/2, these two limiting values are not

equal, and we deduce that ( l)m% : f(z,y) does not exist.
z,y)—(0,0



2. Using || 7’| = v/10, we obtain that @ = (1/4/10,3/+/10) is a unit vector in the direction of .
The problem is to determine the value of D~ f(1,—1). Now, using Vf = (2zy, z* + 2y), we
obtain that Vf(1,—1) = (-2, —1) and, hence, D+ f(1,—1) = Vf(1,—1)u = —5//10.

3. We take F(z,y,2) = 2% — 2y?> — xyz?. Since VF = (22 — yz?, —4y — x2°, —2zy2), we get
VF(1,—-1,-1) = (3,3, —2). Therefore, the tangent plane is of the form 3z + 3y — 2z = k. Since
(1, —1,—1) is on the plane, we deduce k = 3 — 3 + 2 = 2 and the plane is 3z + 3y — 2z = 2.

5. The chain rule gives

0z 0z Or 0z Oy N ) ; -
PR — - . 2 — _ 1 . S 2 . s
9s oz 0s 9y 0s (Bz°y +y* — 1) - (') + (27 + 2zy) - (t7€™)
= (3t3625+st 422t _ 1) - (e°t) + (t3635 + 2t26s+st) . <t2€st)'

6. Setting f, = 122 — 6 = 0 and f, = 6y = 0, we deduce that (z,y) = (1/2,0). Since (1/2,0) is in
R, we consider f(1/2,0) = 3/2—3—9 = —21/2. On the boundary of R, we have y? = 4 — 22 so
that f(z,y) = 62>+ 3(4 — 2?) — 62 — 9 = 32> — 62 + 3. Given —2 < z < 2 on the boundary, we
are interested in the extrema of w(x) = 3z? — 6x + 3 on the interval [—2, 2]. Since w'(x) = 6z — 6,
we consider w(z) at x = 1 and at the endpoints of our interval [—2,2]. We have w(—2) = 27,
w(1) = 0 and w(2) = 3. These are possible extrema for f(x,y) on the boundary of R. Recalling
f(1/2,0) = —21/2, we deduce that the global maximum value of f(x,y) on R is 27 and the global
minimum value of f(z,y) on Ris —21/2.

7. We have
fo= @y +1)(2x —2), f, =12y°(2" — 22 +2) — 36y” + 24y,
for =203y + 1),  f,y =36y (2* — 20 +2) — T2y +24, and f,, = 12y°(22 — 2).

Setting f, = 0, we deduce x = 1. Taking x = 1 in the equation f,, = 0 gives 12y —36y*+24y
Since 12y3 — 36y? + 24y = 12y(y — 1)(y — 2), we deduce that the critical points are (x,y) = (1
(1,1) and (1,2). Since D = f,.fy, — f2,. We get

xy?

= 0.
0,

D(1,0)=2-24—0°>0, D(1,1)=8-(-12)—=0*<0, and D(1,2)=98-24—0>>0.

Noting the signs of f,, at these points (all positive), there is a local minimum at (1, 0) and at (1, 2)
and a saddle point at (1, 1).

Some 1998 Solutions:

1. (a) Since f, = 2z and f, = —2y, we get Vf(0,1) = (0,—2). A unit vector in the direction of
(1,1)is @ = (1/v/2,1/1/2). Thus, the answer is D+ f(0,1) = (0, —=2)+(1//2,1/v/2) = —v/2.
(b) The maximum value of the directional derivative at (0, 1) is ||V f(0, 1)|| = [|(0, —=2)|| = 2.

3. Taking F'(z,y,2) = 23 — xsin(y) + 22, we get

VF = (32% —siny, —wcosy,2z) and VF(-1,0,1)=(3,1,2).

Hence, we can use 3x+y+ 2z = k for the equation of the plane where £ = —3+2 = —1 (obtained
from the fact that (—1, 0, 1) is on the plane). Thus, the plane is 3z + y + 2z = —1.



6. (a) On the circle, 2% + y? = 4 so that
f(z,y) = 922 +69° + 620 +4 = 32° + 6(2* +y*) + 60 + 4 = 32° + 24 + 62 +4 = 32 + 62 + 28.

Since —2 < x < 2 on the circle, we are interested in finding the extrema of w(z) = 3x% 4 62+ 28
where —2 < x < 2. Since w'(x) = 6x + 6 = 0 precisely when x+ = —1 and since —1 is
in the interval [—2,2], we are left with comparing the numbers w(—2) = 28, w(—1) = 25 and
w(2) = 52. Therefore, on the circle, the global maximum value is 52 and the global minimum
value is 25.

(b) Observe that f, = 18z + 6 = 6(3x + 1) = 0 and f,, = 12y = 0 precisely when = —1/3 and
y = 0. Also, the point (—1/3,0) is in R. So we consider f(—1/3,0) = 1 —2+4 = 3 and compare
this with the extrema we already found on the boundary of 2 in part (a). The global maximum on
R is 52, and the global minimum is 3.

7. We have
fz =42y -8y, f,= 202 — 8x + 2y, fex=4y, [y =2, and [, =4x -8

Setting f, = 0, we see that 4y(x — 2) = 0 so that either z = 2 or y = 0. Putting x = 2 in
fy = 0, we deduce —8 + 2y = 0 and, hence, y = 4. Putting y = 0 in f, = 0, we deduce
2% — 8x = 2z(x — 4) = 0 and, hence, z = 0 or = 4. This gives us three points to consider,
namely (2,4), (0,0) and (4,0). Since D = for fyy — f2,» We get

D(2,4)=16-2—-0°>0, D(0,00=0-2—(-8)2<0, and D(4,0)=0-2-8<0.

Since f,.(2,4) = 16 > 0, there is a local minimum at (2, 4); there are saddle points at (0,0) and
(4,0).

Some 1999 Solutions:

6. Since f, = 342 cannot equal 0, the critical points are simply the points on the boundary of S, that
is the points (, y) satisfying z2+y* = 9. On the boundary, f(z,y) = 3z+z(9—2?%) = —23+12z.
We set w(z) = —a® + 12z where z is in the interval [—3, 3] (this is the interval z lies on for (z,y)
in S). Since w'(r) = —32? + 12 = —3(2* — 4) = 0 precisely when x = 42 and —2 and
2 are in [—3, 3], we need only consider w(—3) = 27 — 36 = —9, w(—2) = 8 — 24 = —16,
w(2) = =8+ 24 = 16 and w(3) = —27 + 36 = 9. Note that when z = +2 on the boundary
2?4+ y> = 9, we have y = ++/5. Therefore, the (global) maximum value of f (z,y) on S is 16
and it occurs at (z,y) = (2, £/5), and the (global) minimum value of f(z,y) on S is —16 and it
occurs at (z,7) = (-2, +£/5).

7. We have
fo =423 + 4y + ¢, fy =42+ 22y, for = 1222, fyy =2z, and f,, =4+ 2y.

Since 4x + 2xy = 2x(2 + y), we want to consider points where x = 0 or y = —2. Setting z = 0
in f, =0givesdy +y?> = y(4+y) = 0sothaty = 0 or y = —4. Setting y = —2 in f, = 0 gives



423 — 4 = 4(x® — 1) = 0 so that x = 1. Hence, the three critical points are (0,0), (0, —4) and
(1,—2). Using D = furfyy — f2,» We obtain

D(0,0)=0-0—-4*<0, D(0,-4)=0-0-(-4)*<0, and D(1,-2)=12-2—0>>0.

Thus, there are saddle points at (0,0) and (0, —4) and a relative minimum at (1, —2).

Some Spring 2001 Solutions:

1. (a) Since ||(=3,4)|| = 5, a unit vector going in the direction of (—3,4) is w = (—3/5,4/5).
Using Vf = (3z%y?, 223y — 1), we obtain V f(1,—2) = (12, —5). We deduce that the answer is
Do f(1,-2) = (12, —5)+(—3/5,4/5) = (=36 — 20)/5 = —56/5.

(b) Since ||V f(1,—-2)| = [|(12,=5)| = V144425 = /169 = 13, the minimal value of the
directional derivative at (1, —2) is —13.

3. The chain rule gives

w w  Ox w
?)_u = g—x%—l—g—yg—z = 322y - 4u® + (2° — 2y) - (—vsin(uv)).

6. The value of f, = 322 + 4y? is a sum of two squares (that is, (v/3z)? and (2y)?) and can only be 0
if each of the squares is 0. So f, = 0 implies that (z,y) = (0,0). Since f, = 8xy = 0 at (0,0) as
well, we get that (0, 0) is a critical point. The other critical points are all the points on the boundary
of S, that is the points (x,y) where 22 + y? = 9. To determine the maximum and minimum values
of f on S, we consider the value of f at the critical points. First, f(0,0) = 0. Next, we look at
f(x,y) where 2% + y* = 9. Here, f(z,y) = w(z) where w(z) = 2% + 42(9 — 2?) = —32° + 36z
and —3 < z < 3. Since w'(z) = —9z% + 36 = —9(z + 2)(x — 2) and both —2 and 2 are in the
interval [—3, 3], we consider w(—3) = =27, w(—2) =24 — 72 = —48, w(2) = —24 + 72 = 48
and w(3) = 27. We deduce that the maximum value of f(x,y) on S is 48 and the minimum value
is —48. These occur when x = +2 on the boundary. In each case (xr = 2 and x = —2), the value
of y on the boundary is y = ++/5 (since we have 2 + y> = 9 on the boundary). This gives that
the maximum occurs at (2, ++/5) and the minimum occurs at (—2, ++/5).

7. Observe that
fo =19° —62% + 42 — 3y, fy = 3zy? — 3z,
for = —1204+4, f, =6ry, and f,, =3y*— 3.
Since
fz(1,-1) =0, f,(1,-1)=0, f.(-1,1)=-12, f,(-1,1)=0,
f:(0,0) =0, and f,(0,0) =0,

we see that (1, —1) and (0, 0) are critical points and that (—1, 1) is not. Using D = foo fyy — f2»

we get D(1,—1) = (=8)(—6) — 0> > 0 and D(0,0) = 4-0 — (—3)® < 0. Since —8 < 0, we
deduce that there is a relative maximum at (1, —1). There is a saddle point at (0, 0).



