
Old Math 241 Test 2’s

Some 1992 Solutions:

3. The chain rule gives

∂z

∂t
=

∂z

∂x
· ∂x

∂u
· ∂u

∂s
· ∂s

∂t
= y2√y cos(x + y) · 3 · 2 · 3w = 18wy2√y cos(x + y).

4. We want both ∂z/∂x and ∂z/∂y to be 0 at P . Calculating the partial derivatives, we obtain

3(x + y)2x + (x + y)3 + 2x− 1 = 0 and 3(x + y)2x = 0.

The second equation gives that either x = 0 or y = −x. If x = 0, then the first equation gives
y3 − 1 = 0 so that y = 1. If y = −x, then the first equation gives 2x− 1 = 0 so that x = 1/2 and
y = −x = −1/2. To get the z-coordinate of each point P , we plug in our values of x and y into
the equation z = (x + y)3x + x2−x. We deduce that there are two such points P , namely (0, 1, 0)
and (1/2,−1/2,−1/4).

5. Here, we have

fx = 2x + 2y + 2, fy = 2x + 4y, fxx = 2, fyy = 4 and fxy = 2.

We want points where both fx = 0 and fy = 0. Since fy − fx = 2y − 2, we deduce y = 1. Taking
y = 1 in the equation 2x + 4y = 0, we get x = −2. As z = f(x, y), for x = −2 and y = 1, we
have z = −1. So there is one point, namely (−2, 1,−1), to consider for this problem. We have
D = 2 · 4− 22 = 4 and fxx > 0, so there is a relative minimum at (−2, 1,−1).

6. Since fx = y2 + 5 is never 0, there are no points inside the disk to consider, and we need only
consider the boundary. Using y2 = 4 − x2 on the boundary, we deduce that if (x, y) is on the
boundary then f(x, y) = w(x) where

w(x) = x(4− x2) + 3(4− x2) + 5x− 5 = −x3 − 3x2 + 9x + 7.

Since x2 + y2 = 4, we are interested in finding the extrema for w(x) with −2 ≤ x ≤ 2. As
w′(x) = −3x2−6x+9 = −3(x−1)(x+3) and−3 is not in the interval [−2, 2], we are interested
in w(x) for x ∈ {−2, 1, 2} (note that the endpoints of the interval [−2, 2] are included here). Since

w(−2) = 8−12−18+7 = −15, w(1) = −1−3+9+7 = 12, and w(2) = −8−12+18+7 = 5,

we deduce that the (global) maximum value is 12 and the (global) minimum value is −15.

Some 1994 Solutions:

1. Since f(0, y) = 0, the function approaches (indeed equals) 0 as (x, y) approaches the origin along
the line x = 0 (the y-axis). Since f(x, x) = 1/2, the function approaches (indeed equals) 1/2 as
(x, y) approaches the origin along the line y = x. Since 0 6= 1/2, these two limiting values are not
equal, and we deduce that lim

(x,y)→(0,0)
f(x, y) does not exist.



2. Using ‖−→v ‖ =
√

10, we obtain that −→u = 〈1/
√

10, 3/
√

10〉 is a unit vector in the direction of −→v .
The problem is to determine the value of D−→u f(1,−1). Now, using ∇f = 〈2xy, x2 + 2y〉, we
obtain that∇f(1,−1) = 〈−2,−1〉 and, hence, D−→u f(1,−1) = ∇f(1,−1)•−→u = −5/

√
10.

3. We take F (x, y, z) = x2 − 2y2 − xyz2. Since ∇F = 〈2x − yz2,−4y − xz2,−2xyz〉, we get
∇F (1,−1,−1) = 〈3, 3,−2〉. Therefore, the tangent plane is of the form 3x + 3y− 2z = k. Since
(1,−1,−1) is on the plane, we deduce k = 3− 3 + 2 = 2 and the plane is 3x + 3y − 2z = 2.

5. The chain rule gives

∂z

∂s
=

∂z

∂x
· ∂x

∂s
+

∂z

∂y
· ∂y

∂s
= (3x2y + y2 − 1) · (est) + (x3 + 2xy) · (t2est)

=
(
3t3e2s+st + t2e2st − 1

)
· (est) +

(
t3e3s + 2t2es+st

)
· (t2est).

6. Setting fx = 12x− 6 = 0 and fy = 6y = 0, we deduce that (x, y) = (1/2, 0). Since (1/2, 0) is in
R, we consider f(1/2, 0) = 3/2− 3− 9 = −21/2. On the boundary of R, we have y2 = 4−x2 so
that f(x, y) = 6x2 + 3(4− x2)− 6x− 9 = 3x2− 6x + 3. Given −2 ≤ x ≤ 2 on the boundary, we
are interested in the extrema of w(x) = 3x2−6x+3 on the interval [−2, 2]. Since w′(x) = 6x−6,
we consider w(x) at x = 1 and at the endpoints of our interval [−2, 2]. We have w(−2) = 27,
w(1) = 0 and w(2) = 3. These are possible extrema for f(x, y) on the boundary of R. Recalling
f(1/2, 0) = −21/2, we deduce that the global maximum value of f(x, y) on R is 27 and the global
minimum value of f(x, y) on R is −21/2.

7. We have

fx = (3y4 + 1)(2x− 2), fy = 12y3(x2 − 2x + 2)− 36y2 + 24y,

fxx = 2(3y4 + 1), fyy = 36y2(x2 − 2x + 2)− 72y + 24, and fxy = 12y3(2x− 2).

Setting fx = 0, we deduce x = 1. Taking x = 1 in the equation fy = 0 gives 12y3−36y2+24y = 0.
Since 12y3−36y2 +24y = 12y(y−1)(y−2), we deduce that the critical points are (x, y) = (1, 0),
(1, 1) and (1, 2). Since D = fxxfyy − f 2

xy, we get

D(1, 0) = 2 · 24− 02 > 0, D(1, 1) = 8 · (−12)− 02 < 0, and D(1, 2) = 98 · 24− 02 > 0.

Noting the signs of fxx at these points (all positive), there is a local minimum at (1, 0) and at (1, 2)
and a saddle point at (1, 1).

Some 1998 Solutions:

1. (a) Since fx = 2x and fy = −2y, we get ∇f(0, 1) = 〈0,−2〉. A unit vector in the direction of
〈1, 1〉 is −→u = 〈1/

√
2, 1/
√

2〉. Thus, the answer is D−→u f(0, 1) = 〈0,−2〉•〈1/
√

2, 1/
√

2〉 = −
√

2.

(b) The maximum value of the directional derivative at (0, 1) is ‖∇f(0, 1)‖ = ‖〈0,−2〉‖ = 2.

3. Taking F (x, y, z) = x3 − x sin(y) + z2, we get

∇F = 〈3x2 − sin y,−x cos y, 2z〉 and ∇F (−1, 0, 1) = 〈3, 1, 2〉.

Hence, we can use 3x+y+2z = k for the equation of the plane where k = −3+2 = −1 (obtained
from the fact that (−1, 0, 1) is on the plane). Thus, the plane is 3x + y + 2z = −1.



6. (a) On the circle, x2 + y2 = 4 so that

f(x, y) = 9x2 +6y2 +6x+4 = 3x2 +6(x2 + y2)+6x+4 = 3x2 +24+6x+4 = 3x2 +6x+28.

Since −2 ≤ x ≤ 2 on the circle, we are interested in finding the extrema of w(x) = 3x2 + 6x + 28
where −2 ≤ x ≤ 2. Since w′(x) = 6x + 6 = 0 precisely when x = −1 and since −1 is
in the interval [−2, 2], we are left with comparing the numbers w(−2) = 28, w(−1) = 25 and
w(2) = 52. Therefore, on the circle, the global maximum value is 52 and the global minimum
value is 25.

(b) Observe that fx = 18x + 6 = 6(3x + 1) = 0 and fy = 12y = 0 precisely when x = −1/3 and
y = 0. Also, the point (−1/3, 0) is in R. So we consider f(−1/3, 0) = 1−2+4 = 3 and compare
this with the extrema we already found on the boundary of R in part (a). The global maximum on
R is 52, and the global minimum is 3.

7. We have

fx = 4xy − 8y, fy = 2x2 − 8x + 2y, fxx = 4y, fyy = 2, and fxy = 4x− 8.

Setting fx = 0, we see that 4y(x − 2) = 0 so that either x = 2 or y = 0. Putting x = 2 in
fy = 0, we deduce −8 + 2y = 0 and, hence, y = 4. Putting y = 0 in fy = 0, we deduce
2x2 − 8x = 2x(x − 4) = 0 and, hence, x = 0 or x = 4. This gives us three points to consider,
namely (2, 4), (0, 0) and (4, 0). Since D = fxxfyy − f 2

xy, we get

D(2, 4) = 16 · 2− 02 > 0, D(0, 0) = 0 · 2− (−8)2 < 0, and D(4, 0) = 0 · 2− 82 < 0.

Since fxx(2, 4) = 16 > 0, there is a local minimum at (2, 4); there are saddle points at (0, 0) and
(4, 0).

Some 1999 Solutions:

6. Since fx = 3+y2 cannot equal 0, the critical points are simply the points on the boundary of S, that
is the points (x, y) satisfying x2+y2 = 9. On the boundary, f(x, y) = 3x+x(9−x2) = −x3+12x.
We set w(x) = −x3 + 12x where x is in the interval [−3, 3] (this is the interval x lies on for (x, y)
in S). Since w′(x) = −3x2 + 12 = −3(x2 − 4) = 0 precisely when x = ±2 and −2 and
2 are in [−3, 3], we need only consider w(−3) = 27 − 36 = −9, w(−2) = 8 − 24 = −16,
w(2) = −8 + 24 = 16 and w(3) = −27 + 36 = 9. Note that when x = ±2 on the boundary
x2 + y2 = 9, we have y = ±

√
5. Therefore, the (global) maximum value of f(x, y) on S is 16

and it occurs at (x, y) = (2,±
√

5), and the (global) minimum value of f(x, y) on S is −16 and it
occurs at (x, y) = (−2,±

√
5).

7. We have

fx = 4x3 + 4y + y2, fy = 4x + 2xy, fxx = 12x2, fyy = 2x, and fxy = 4 + 2y.

Since 4x + 2xy = 2x(2 + y), we want to consider points where x = 0 or y = −2. Setting x = 0
in fx = 0 gives 4y + y2 = y(4 + y) = 0 so that y = 0 or y = −4. Setting y = −2 in fx = 0 gives



4x3 − 4 = 4(x3 − 1) = 0 so that x = 1. Hence, the three critical points are (0, 0), (0,−4) and
(1,−2). Using D = fxxfyy − f 2

xy, we obtain

D(0, 0) = 0 · 0− 42 < 0, D(0,−4) = 0 · 0− (−4)2 < 0, and D(1,−2) = 12 · 2− 02 > 0.

Thus, there are saddle points at (0, 0) and (0,−4) and a relative minimum at (1,−2).

Some Spring 2001 Solutions:

1. (a) Since ‖〈−3, 4〉‖ = 5, a unit vector going in the direction of 〈−3, 4〉 is −→u = 〈−3/5, 4/5〉.
Using ∇f = 〈3x2y2, 2x3y − 1〉, we obtain ∇f(1,−2) = 〈12,−5〉. We deduce that the answer is
D−→u f(1,−2) = 〈12,−5〉•〈−3/5, 4/5〉 = (−36− 20)/5 = −56/5.

(b) Since ‖∇f(1,−2)‖ = ‖〈12,−5〉‖ =
√

144 + 25 =
√

169 = 13, the minimal value of the
directional derivative at (1,−2) is −13.

3. The chain rule gives

∂w

∂u
=

∂w

∂x
· ∂x

∂u
+

∂w

∂y
· ∂y

∂u
= 3x2y · 4u3 + (x3 − 2y) ·

(
− v sin(uv)

)
.

6. The value of fx = 3x2 + 4y2 is a sum of two squares (that is, (
√

3x)2 and (2y)2) and can only be 0
if each of the squares is 0. So fx = 0 implies that (x, y) = (0, 0). Since fy = 8xy = 0 at (0, 0) as
well, we get that (0, 0) is a critical point. The other critical points are all the points on the boundary
of S, that is the points (x, y) where x2 + y2 = 9. To determine the maximum and minimum values
of f on S, we consider the value of f at the critical points. First, f(0, 0) = 0. Next, we look at
f(x, y) where x2 + y2 = 9. Here, f(x, y) = w(x) where w(x) = x3 + 4x(9− x2) = −3x3 + 36x
and −3 ≤ x ≤ 3. Since w′(x) = −9x2 + 36 = −9(x + 2)(x − 2) and both −2 and 2 are in the
interval [−3, 3], we consider w(−3) = −27, w(−2) = 24 − 72 = −48, w(2) = −24 + 72 = 48
and w(3) = 27. We deduce that the maximum value of f(x, y) on S is 48 and the minimum value
is −48. These occur when x = ±2 on the boundary. In each case (x = 2 and x = −2), the value
of y on the boundary is y = ±

√
5 (since we have x2 + y2 = 9 on the boundary). This gives that

the maximum occurs at (2,±
√

5) and the minimum occurs at (−2,±
√

5).

7. Observe that

fx = y3 − 6x2 + 4x− 3y, fy = 3xy2 − 3x,

fxx = −12x + 4, fyy = 6xy, and fxy = 3y2 − 3.

Since

fx(1,−1) = 0, fy(1,−1) = 0, fx(−1, 1) = −12, fy(−1, 1) = 0,

fx(0, 0) = 0, and fy(0, 0) = 0,

we see that (1,−1) and (0, 0) are critical points and that (−1, 1) is not. Using D = fxxfyy − f 2
xy,

we get D(1,−1) = (−8)(−6) − 02 > 0 and D(0, 0) = 4 · 0 − (−3)2 < 0. Since −8 < 0, we
deduce that there is a relative maximum at (1,−1). There is a saddle point at (0, 0).


