Some Solutions to the Final Exam from Spring 2001

Part I, Problem 5: The extrema must occur at points (x, ) satisfying
3zy = M\223, 2¥=XMy3,  and 3z'+4+yt=1,

for some A\. When you do Lagrange multiplier problems, don’t forget the constraint equation (the
last equation above). If x = 0, then the first two equations can hold by taking A = 0. In order
for the third equation also to hold, we need y = +1. So (0,41) are two points to consider for
extrema. Next suppose that z # 0. Then we divide by 322 in the first equation to get y = 4\z.
Putting this into the second equation and dividing by z3 gives 1 = (4\)%. So A = +1/4. Since
y = 4\x, we get y = +x. Putting this into the third equation gives 42! = 1 so that z = +1//2
and yy = 4+1/+/2. We are wanting the extrema for f(z,y) = 2°y. The points (x, y) to consider are

(0,£1), (1/vV2,+1/V2), (—1/V2,%1/V2).

The maximum value is f(1/v/2,1/v/2) = f(—1/v/2,—=1/v/2) = 1/4 and the minimum value is
FANV2,=1/V2) = f(=1/v2,1/v/2) = —1/4.

Part II, Problem 1: Let S be the square region enclosed by the C, and let
f(z,y) =yx+3z%siny +3y and g(z,y) = 2° cosy — y° + 3.
Then Green’s Theorem gives us that

/Cf(x,y)dx—l—g(x,y)dy://s (%_%) dA://g((3x2cosy+3)—(x—i—Sm%osy—i—S))dA

:/01/01(—x)dydx:/01(—m)da::—%2

Part I1, Problem 2: (a) Note that D is the square of the distance between a point on ¢ and a point
on /. Since a point on ¢ can be represented as (1 —¢, —1 —¢, 2) and a point on ¢’ can be represented
at (—1+s,3 + s,—1 + 3s), the distance formula gives

D=(1=t)= (=148 + (=1 =) = 3+5)" + (2= (=1 +3s))

=(2—t—8)?2+(—4—t—5)*+(3—3s)%
This last expression for D (or the first one) is sufficient for an answer to this problem.

(b) We want the minimum of D, so we set its partial derivatives equal to 0. This gives

—2(2—t—s)—2(-4—t—s)=0and —2(2—t—s)—2(—4—t—s5)—6(3—3s)=0.



Subtracting, we see that 6(3 — 3s) = 0 so that s = 1. Putting this in the first (or second) equation
gives after simplifying that ¢ = —2. Since a minimum distance between the lines must exist, it
occurs where t = —2 and s = 1.

(c) Recall that the point on line ¢ is (1 —¢,—1 —¢, 2) and the pointon ¢’ is (—1+s,3+ s, —1+3s).
At the minimum for D, we have t = —2 and s = 1, so the points are (3, 1,2) and (0, 4, 2).

Part II, Problem 3: (a) The integral is over the half-circle of radius 3
shown to the right. Switching to polar coordinates, the integral becomes
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Evaluating by using the substitution u = 7? + 16 gives that this integral
is the same as
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(b) The integral is over the triangle depicted to the right. 25]
Switching the order of integration results in the integral /
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Evaluating this last integral by substituting u = 4y — y
results in
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Part I1, Problem 4: (a) Suppose ax + by + cz = d is the plane P’. Since P’ intersects P at a 60°
angle, there is either a 60° angle or a 120° angle between a normal to the plane P’ and a normal to
the plane P. In other words, the angle between (a, b, ¢) (which is normal to P’) and (1, —2, —1)
(which is normal to P) is either 60° or 120°. This gives
:I:l— (a,b,c)-(1,-2,-1)  a—2b—c
2 {a, b, =2, -1 Va>+ 02+ V6

which is equivalent to what was to be shown. The exact same argument applies above if ax + by +
cz = d is the plane P” instead of the plane P’.




(b) Putting a® + b* + ¢* = 6 into the formula for part (a) gives

6 6
PRy S S
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This is all that was asked for.
(¢) The points () and R are on both the planes P’ and P”. This means that @)2 is parallel to
these planes. Since (a, b, ¢) is a vector that is perpendicular to one of these planes, we obtain that
—
QR and (a,b, c) are perpendicular. This implies their dot product is 0. Since Q = (3,—2,4)

—

and R = (4,—1,3), we have QR = (1,1,—1). Hence, (1,1,—1) - (a,b,c) = 0, which gives
a+b—c=0.

(d) Subtracting a — 20 — ¢ = 3 from a + b — ¢ = 0 gives 30 = —3 so that b = —1. The equations
become a — ¢ = 1 and a® + ¢* = 5. The first of these implies @ = ¢ + 1. Plugging this into the
other equation gives (¢ + 1)? + ¢ = 5 which, after a little work, is equivalent to ¢* + ¢ — 2 = 0.
Since ¢ 4+ c—2 = (¢ —1)(c+2), we deduce that either ¢ = 1 or ¢ = —2. Recalling that a = ¢+ 1
and b = —1, we deduce that either (a,b,c) = (2,—1,1) or (a,b,¢) = (=1, —1,—2).

(e) There are two planes passing through () and R that make a 60° angle with P. Part (d) implies
that they are of the form 2x — y + 2z = dy and —x — y — 2z = d, for some numbers d; and d,.
Since ) = (3, —2,4) is on each plane, we deduce d; = 12 and dy = —9. Hence, the planes P’ and
P” can be written in the form 2x —y + 2z = 12 and x + y + 22 = 9.



