
Some Solutions to the Final Exam from Spring 2001

Part I, Problem 5: The extrema must occur at points (x, y) satisfying

3x2y = λ12x3, x3 = λ4y3, and 3x4 + y4 = 1,

for some λ. When you do Lagrange multiplier problems, don’t forget the constraint equation (the
last equation above). If x = 0, then the first two equations can hold by taking λ = 0. In order
for the third equation also to hold, we need y = ±1. So (0,±1) are two points to consider for
extrema. Next suppose that x 6= 0. Then we divide by 3x2 in the first equation to get y = 4λx.
Putting this into the second equation and dividing by x3 gives 1 = (4λ)4. So λ = ±1/4. Since
y = 4λx, we get y = ±x. Putting this into the third equation gives 4x4 = 1 so that x = ±1/

√
2

and y = ±1/
√

2. We are wanting the extrema for f(x, y) = x3y. The points (x, y) to consider are

(0,±1), (1/
√

2,±1/
√

2), (−1/
√

2,±1/
√

2).

The maximum value is f(1/
√

2, 1/
√

2) = f(−1/
√

2,−1/
√

2) = 1/4 and the minimum value is
f(1/
√

2,−1/
√

2) = f(−1/
√

2, 1/
√

2) = −1/4.

Part II, Problem 1: Let S be the square region enclosed by the C, and let

f(x, y) = yx+ 3x2 sin y + 3y and g(x, y) = x3 cos y − y3 + 3x.

Then Green’s Theorem gives us that∫
C

f(x, y) dx+ g(x, y) dy =

∫∫
S

(
∂g

∂x
− ∂f

∂y

)
dA =

∫∫
S

(
(3x2 cos y + 3)− (x+ 3x2 cos y + 3)

)
dA

=

∫ 1

0

∫ 1

0

(−x) dy dx =

∫ 1

0

(−x) dx = −x
2

2

∣∣∣∣1
0

= −1

2
.

Part II, Problem 2: (a) Note that D is the square of the distance between a point on ` and a point
on `′. Since a point on ` can be represented as (1− t,−1− t, 2) and a point on `′ can be represented
at (−1 + s, 3 + s,−1 + 3s), the distance formula gives

D =
(
(1− t)− (−1 + s)

)2
+
(
(−1− t)− (3 + s)

)2
+
(
2− (−1 + 3s)

)2
= (2− t− s)2 + (−4− t− s)2 + (3− 3s)2.

This last expression for D (or the first one) is sufficient for an answer to this problem.

(b) We want the minimum of D, so we set its partial derivatives equal to 0. This gives

−2(2− t− s)− 2(−4− t− s) = 0 and − 2(2− t− s)− 2(−4− t− s)− 6(3− 3s) = 0.



Subtracting, we see that 6(3− 3s) = 0 so that s = 1. Putting this in the first (or second) equation
gives after simplifying that t = −2. Since a minimum distance between the lines must exist, it
occurs where t = −2 and s = 1.

(c) Recall that the point on line ` is (1− t,−1− t, 2) and the point on `′ is (−1+s, 3+s,−1+3s).
At the minimum for D, we have t = −2 and s = 1, so the points are (3, 1, 2) and (0, 4, 2).

Part II, Problem 3: (a) The integral is over the half-circle of radius 3
shown to the right. Switching to polar coordinates, the integral becomes∫ 3π/2

π/2

∫ 3

0

√
r2 + 16 r dr dθ.

Evaluating by using the substitution u = r2 + 16 gives that this integral
is the same as∫ 3π/2

π/2

1

3
(r2 + 16)3/2

∣∣∣∣3
0

dθ =

∫ 3π/2

π/2

1

3
(53 − 43)

∣∣∣∣3
0

dθ =
61π

3
.

(b) The integral is over the triangle depicted to the right.
Switching the order of integration results in the integral∫ 2

0

∫ 1

y−1

(4y − y2)3/2 dx dy =

∫ 2

0

(2− y)(4y − y2)3/2 dy.

Evaluating this last integral by substituting u = 4y − y2

results in
1

5
(4y − y2)5/2

∣∣∣∣2
0

=
32

5
.

Part II, Problem 4: (a) Suppose ax+ by + cz = d is the plane P ′. Since P ′ intersects P at a 60◦

angle, there is either a 60◦ angle or a 120◦ angle between a normal to the plane P ′ and a normal to
the plane P . In other words, the angle between 〈a, b, c〉 (which is normal to P ′) and 〈1,−2,−1〉
(which is normal to P) is either 60◦ or 120◦. This gives

±1

2
=
〈a, b, c〉 · 〈1,−2,−1〉
‖〈a, b, c〉‖ ‖〈1,−2,−1〉‖

=
a− 2b− c√

a2 + b2 + c2
√

6
,

which is equivalent to what was to be shown. The exact same argument applies above if ax+ by+
cz = d is the plane P ′′ instead of the plane P ′.



(b) Putting a2 + b2 + c2 = 6 into the formula for part (a) gives

a− 2b− c = ±
√

6

2

√
6 = ±6

2
= ±3.

This is all that was asked for.

(c) The points Q and R are on both the planes P ′ and P ′′. This means that
−→
QR is parallel to

these planes. Since 〈a, b, c〉 is a vector that is perpendicular to one of these planes, we obtain that
−→
QR and 〈a, b, c〉 are perpendicular. This implies their dot product is 0. Since Q = (3,−2, 4)

and R = (4,−1, 3), we have
−→
QR = 〈1, 1,−1〉. Hence, 〈1, 1,−1〉 · 〈a, b, c〉 = 0, which gives

a+ b− c = 0.

(d) Subtracting a− 2b− c = 3 from a + b− c = 0 gives 3b = −3 so that b = −1. The equations
become a − c = 1 and a2 + c2 = 5. The first of these implies a = c + 1. Plugging this into the
other equation gives (c + 1)2 + c2 = 5 which, after a little work, is equivalent to c2 + c − 2 = 0.
Since c2 + c− 2 = (c− 1)(c+2), we deduce that either c = 1 or c = −2. Recalling that a = c+1
and b = −1, we deduce that either (a, b, c) = (2,−1, 1) or (a, b, c) = (−1,−1,−2).

(e) There are two planes passing through Q and R that make a 60◦ angle with P . Part (d) implies
that they are of the form 2x − y + z = d1 and −x − y − 2z = d2 for some numbers d1 and d2.
Since Q = (3,−2, 4) is on each plane, we deduce d1 = 12 and d2 = −9. Hence, the planes P ′ and
P ′′ can be written in the form 2x− y + z = 12 and x+ y + 2z = 9.


