MATH 122: TEST 2 REVIEW

Where is f'(x) positive?

Where is f'(x) positive?

Where is f'(x) negative?

Where is f'(x) negative?

Where is f'(x) zero?

Where is f'(x) zero?

Where is f'(x) largest?

Where is f'(x) largest?

Where is f'(x) the most negative?

Where is f'(x) the most negative?

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the first derivative appear positive or negative?

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the first derivative appear positive or negative? Negative, the function is decreasing.

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the first derivative appear positive or negative? Negative, the function is decreasing.

 $145 - 150 = -5, \quad 137 - 145 = -8, \ldots$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the second derivative appear positive or negative?

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the second derivative appear positive or negative? Negative, the differences are decreasing.

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the second derivative appear positive or negative? Negative, the differences are decreasing.

 $145 - 150 = -5, \ 137 - 145 = -8, \ 122 - 137 = -15, \ldots$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the second derivative appear positive or negative? Negative, the differences are decreasing.

 $145 - 150 = -5, \ 137 - 145 = -8, \ 122 - 137 = -15, \ldots$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the second derivative appear positive or negative? Negative, the differences are decreasing.

 $145 - 150 = -5, \ 137 - 145 = -8, \ 122 - 137 = -15, \ldots$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

Does the second derivative appear positive or negative? Negative, the differences are decreasing.

 $145 - 150 = -5, \ 137 - 145 = -8, \ 122 - 137 = -15, \ \dots \\ -8 - (-5) = -3 \qquad -15 - (-8) = -7$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

$$f'(2) pprox rac{137 - 145}{4 - 2}$$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

$$f'(2) pprox rac{137 - 145}{4 - 2} = rac{-8}{2}$$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

$$f'(2) \approx \frac{137 - 145}{4 - 2} = \frac{-8}{2} = -4$$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

$$f'(2) pprox rac{145 - 150}{2 - 0} = rac{-5}{2} = -2.5$$

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

t	0	2	4	6	8	10
f(t)	150	145	137	122	98	56

$$f'(8) \approx rac{56 - 98}{10 - 8} = rac{-42}{2} = -21$$

Problem 7:

Problem 7:

Problem 7:

Sketch the graph of the derivative of the function.

Sketch the graph of the derivative of the function.

Sketch the graph of the derivative of the function.

f(20) = 68 f'(20) = -3

f(20) = 68 f'(20) = -3

 $f(21) \approx ?$

f(20) = 68 f'(20) = -3

$f(21)pprox 68{-3}$

f(20) = 68 f'(20) = -3

$f(21)\approx 68\!-\!3=65$

f(20) = 68 f'(20) = -3

$f(21)\approx 68{-}3=65$

f(20) = 68 f'(20) = -3

 $f(19) \approx ?$

f(20) = 68 f'(20) = -3 $f(19) \approx 68 - (-3)$

f(20) = 68 f'(20) = -3 $f(19) \approx 68 - (-3) = 71$

f(20) = 68 f'(20) = -3 $f(19) \approx 68 - (-3) = 71$

f(20) = 68 f'(20) = -3

 $f(25) \approx ?$

f(20) = 68 f'(20) = -3

 $f(25)pprox 68-3\cdot 5$

f(20) = 68 f'(20) = -3

 $f(25)pprox 68-3\cdot 5=53$

f(20) = 68 f'(20) = -3

 $f(25)pprox 68-3\cdot 5=53$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced)

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced)

Is f'(t) positive or negative? What does this mean?

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Is f'(t) positive or negative? What does this mean? Positive

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Is f'(t) positive or negative? What does this mean? Positive, so gold production is increasing.

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) When does f'(t) appear greatest?

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) When does f'(t) appear greatest? From 1987 to 1990.

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Estimate f'(1999)? What does it mean?

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Estimate f'(1999)? What does it mean?

f'(1999) pprox

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Estimate f'(1999)? What does it mean?

 $f'(1999) pprox rac{81-74}{1999-1996}$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Estimate f'(1999)? What does it mean?

 $f'(1999) \approx rac{81-74}{1999-1996} = rac{7}{3}$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) Estimate f'(1999)? What does it mean?

 $f'(1999) \approx rac{81-74}{1999-1996} = rac{7}{3} = 2.333\ldots$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced)

f'(1999) pprox 2.33

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced)

 $f'(1999) \approx 2.33$ units ?

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ million troy ounces of gold per year

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ million troy ounces of gold per year About 2.33 million troy ounces more gold were produced in 2000 than in 1999.

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005).

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). f(2000) pprox

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). $f(2000) \approx 81 + 2.33$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). $f(2000) \approx 81 + 2.33 = 83.33$
t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). $f(2000) \approx 81 + 2.33 = 83.33$ About 83.33 million troy oz of gold were produced in 2000.

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). f(2005) pprox

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). $f(2005) \approx 81 + 2.33 \cdot 6$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). $f(2005) \approx 81 + 2.33 \cdot 6 \approx 95$

t (year)	1987	1990	1993	1996	1999
G (million troy ounces)	53	70	73	74	81

G = f(t) (amount of gold produced) $f'(1999) \approx 2.33$ Estimate f(2000) and f(2005). $f(2005) \approx 81 + 2.33 \cdot 6 \approx 95$ About 95 million troy oz of gold were produced in 2005.

f(7) = 3 at the point A

 $f'(\Box) =$

f'(7) =

$$f'(7) = 4$$

What's the marginal cost at q = 400?

What's the marginal cost at q = 400?

What's the marginal cost at q = 400?

$C'(400) \approx$

What's the marginal cost at q = 400?

$$C'(400)\approx\frac{320}{240}$$

What's the marginal cost at q = 400?

$$C'(400) \approx \frac{320}{240} \approx \frac{4}{3}$$

What's the marginal cost at q = 400?

 $C'(400) \approx \frac{320}{240} \approx \frac{4}{3}$ dollars/item

Should the 500^{th} item be produced?

Should the 500th item be produced? No, the total profit will decrease.

What quantity maximizes profit?

What quantity maximizes profit? q = 350

$C(q) \cos t$ R(q) revenue

$C(q) \cos t$ R(q) revenue C(50) = 4300 C'(50) = 24

 $C(q) \cos t$ R(q) revenue C(50) = 4300 C'(50) = 24

C(52) = ?

 $C(q) \cos t$ R(q) revenue C(50) = 4300 C'(50) = 24

C(52) = 4300

 $C(q) \cos t$ R(q) revenue C(50) = 4300 C'(50) = 24

C(52) = 4300 + 24

 $C(q) \operatorname{cost}$ R(q) revenue C(50) = 4300 C'(50) = 24

 $C(52) = 4300 + 24 \cdot 2$

 $C(q) \cos t$ R(q) revenue C(50) = 4300 C'(50) = 24

 $C(52) = 4300 + 24 \cdot 2 = 4300 + 48$

 $C(q) \cos t$ R(q) revenue

C(50) = 4300 C'(50) = 24

 $C(52) = 4300 + 24 \cdot 2 = 4300 + 48 = 4348$

 $C(q) \cos t$ R(q) revenue

C(50) = 4300 C'(50) = 24

 $C(52) = 4300 + 24 \cdot 2 = 4300 + 48 = 4348$

 $C(q) \cos t$ R(q) revenue

C(50) = 4300 C'(50) = 24

 $C(52) = 4300 + 24 \cdot 2 = 4300 + 48 = 4348$ $C(48) = 4300 - 24 \cdot 2 = 4300 - 48 = 4252$

$C(q) \cos t$ R(q) revenue C'(50) = 24 R'(50) = 35

 $C(q) \operatorname{cost}$ R(q) revenue C'(50) = 24 R'(50) = 35

How much profit is earned selling the 51^{st} item?

 $C(q) \cos t$ R(q) revenue

C'(50) = 24 R'(50) = 35

How much profit is earned selling the 51st item?

Cost will increase by _____.
$C(q) \cos t$ R(q) revenue C'(50) = 24 R'(50) = 35

How much profit is earned selling the 51^{st} item? Cost will increase by \$24.

 $C(q) \operatorname{cost}$ R(q) revenue C'(50) = 24 R'(50) = 35

How much profit is earned selling the 51^{st} item?

Cost will increase by \$24. Revenue will increase by

 $C(q) \operatorname{cost}$ R(q) revenue C'(50) = 24 R'(50) = 35

How much profit is earned selling the 51^{st} item?

Cost will increase by \$24. Revenue will increase by \$35.

 $C(q) \cos t$ R(q) revenue C'(50) = 24 R'(50) = 35How much profit is earned selling the 51^{st} item? Cost will increase by \$24. Revenue will increase by \$35. The profit earned will be 35 - 24 = \$11.

 $C(q) \cos t$ R(q) revenue C'(50) = 24 R'(50) = 35How much profit is earned selling the 51^{st} item? Cost will increase by \$24. Revenue will increase by \$35. The profit earned will be 35 - 24 = \$11.

$C(q) \operatorname{cost}$ R(q) revenue C'(100) = 38 R'(100) = 35

 $C(q) \cos t$ R(q) revenue C'(100) = 38 R'(100) = 35

Should the company produce the 101^{st} item?

 $C(q) \cos t$ R(q) revenue C'(100) = 38 R'(100) = 35

Should the company produce the 101st item?

Cost will increase by _____. Revenue will increase by ______.

 $C(q) \operatorname{cost}$ R(q) revenue C'(100) = 38 R'(100) = 35

Should the company produce the 101st item?

Cost will increase by \$38. Revenue will increase by \$35.

 $C(q) \cos t$ R(q) revenue C'(100) = 38 R'(100) = 35Should the company produce the 101^{st} item? Cost will increase by \$38. Revenue will increase by \$35. No, the company will lose money

 $C(q) \cos t$ R(q) revenue C'(100) = 38 R'(100) = 35Should the company produce the 101^{st} item? Cost will increase by \$38. Revenue will increase by \$35. No, the company will lose money even if it sells the 101^{st} item.

Which particle has constant velocity?

Which particle has constant velocity?

Which particle has the greatest initial velocity?

Which particle has the greatest initial velocity?

Which particle has the greatest average velocity?

Which particle has the greatest average velocity?

Which particle has zero average velocity?

Which particle has zero average velocity?