MATH 580: TEST 1, FALL 2019

Instructions and Point Values: There are 8 problems. For each problem below, show <u>ALL</u> of your work. If a box is given, put your answer in the box. If a problem says to simplify your answer, you should in particular not leave your answer in a product form - multiply it out. Do <u>NOT</u> use a calculator.

There are 100 total points possible on this exam.

- 20 pts (1) Give short answers for each of the following.
 - (a) If $a = 2^2 \cdot 3 \cdot 5^2 \cdot 7$ and $b = 2 \cdot 3^2 \cdot 7$, then calculate gcd(a, b). Simplify your answer.

Answer:	
---------	--

(b) Given $2019 = 3 \cdot 673$, where both 3 and 673 are primes, what is the value of $\phi(2019)$? Show appropriate work and simplify your answer.

Answer:

(c) Let n be a positive integer for which $\phi(n) = 1000$. Fill in the two boxes below with integers in the set $\{0, 1, 2, \dots, 999\}$ to make a correct statement.

Exactly one of the following must be true:

The number $2^{\phi(n)}$ is congruent to		mod n or the number		divides n .
--	--	-----------------------	--	---------------

(d) The value of $\phi(1000)$ is 400. What are the last three digits (the three right-most digits) of the number 5^{2003} ? Justify your answer with appropriate work and put the digits in the correct order as they appear from left to right.

10 pts (2) Let a, b and c be integers. Using the definition of what it means for one number to divide another, prove that if a divides both b and b + c, then a divides c. Use complete English sentences throughout your proof.

10 pts (3) Note that 111 = 3.37, where both 3 and 37 are primes. Find $x \in \{0, 1, \dots, 110\}$ satisfying

 $2^{222} \equiv x \pmod{111}.$

In other words, what is the remainder when 2^{222} is divided by 111?

Answer:

10 pts | (4) Using the Euclidean algorithm, calculate gcd(2501, 7747).

Answer:

10 pts (5) The factorization of n and n-1 into prime factors are given for each part below. Given that

$$2^{30} \equiv 1 \pmod{331},$$

determine if the following values of n are pseudoprimes. Be careful when treating the primes < 331. Justify with short answers, but mention important theorems from class that you use.

(a) $n = 11305 = 5 \cdot 7 \cdot 17 \cdot 19$ $n - 1 = 11304 = 2^3 \cdot 3^2 \cdot 157$ Check the correct box below.

n is a pseudoprime.

n is not a pseudoprime.

(b) $n = 30121 = 7 \cdot 13 \cdot 331$ $n - 1 = 30120 = 2^3 \cdot 3 \cdot 5 \cdot 251$ Check the correct box below.

n is a pseudoprime.

n is not a pseudoprime.

ots (6) The last prime year was 2017. What is the remainder when

 $2^{2017} - 2016!$

is divided by 2017? Give an explanation for your answer, indicating clearly what results you are using from class.

Answer:		
---------	--	--

15 pts (7) Find the smallest positive integer x satisfying

 $4104 x \equiv 3 \pmod{8249}$.

Answer:	
---------	--

10 pts

15 pts (8) Let

$$N = \underbrace{1111111\dots11111}_{\text{a string of 400 digits that are 1}} .$$

In other words, N is a 400 digit number with each digit in base 10 equal to 1. Prove that N is not the sum of two cubes by looking at what cubes can be modulo 9. Use complete English sentences throughout your proof. (Note that looking at negative values modulo 9 can simplify some of the work. For example, $7^3 \equiv (-2)^3 \equiv -8 \equiv 1 \pmod{9}$.)