Math 580: Quiz 7

Show ALL Work

Name _____

Solutions

1. Do the following problem from Test 1 without using the Chinese Remainder Theorem. Note that $111 = 3 \cdot 37$, where both 3 and 37 are primes. Find $x \in \{0, 1, ..., 110\}$ satisfying

```
2^{222} \equiv x \pmod{111}.
```

In other words, what is the remainder when 2^{222} is divided by 111? Justify your answer with appropriate work.

Answer:

Solution. Since $\phi(111) = 2 \cdot 36 = 72$, we deduce from Euler's Theorem that $2^{72} \equiv 1 \pmod{111}$. Since $222 = 72 \cdot 3 + 6$ (by dividing 222 by 72), we see that

$$2^{222} \equiv 2^{72 \cdot 3+6} \equiv (2^{72})^3 2^6 \equiv 2^6 \equiv 64 \pmod{111},$$

implying that the answer is 64.

2. You may use the Chinese Remainder Theorem on this problem; it is similar to but different from a problem asked on Test 1. The value of $\phi(1000)$ is 400. What are the last three digits (the three right-most digits) of the number 5^{2002} ? Justify your answer with appropriate work and put all three digits in the correct order as they appear from left to right.

Solution. This can be done by observing that the last 3 digits of 5^k for $k \ge 3$ alternate between being 125 (for k odd) and 625 (for k even). Since 2002 is even, 5^{2002} ends in the digits 625. But you will need to know how to do a problem like this using the Chinese Remainder Theorem (in other words, don't count on an easy pattern for the powers of a number in general). To use the Chinese Remainder Theorem, combine the information from

$$5^2 \equiv 1 \pmod{8} \implies 5^{2002} \equiv 1 \pmod{8}$$
 and $5^{2002} \equiv 0 \pmod{125}$,

where the latter congruence comes from the fact that $125 = 5^3$ divides 5^{2002} . Since the Chinese Remainder Theorem tells us that there is a unique number modulo $8 \times 125 = 1000$ satisfying the congruences $x \equiv 1 \pmod{8}$ and $x \equiv 0 \pmod{125}$, this number will be the value of 5^{2002} modulo 1000. Using our method for the Chinese Remainder Theorem, we obtain

 $x \equiv 1 \cdot 125 \cdot 5 + 0 \cdot (\text{something}) \equiv 625 \pmod{1000}.$

Recall the 5 above comes from computing the inverse of $125 \equiv 5 \mod 8$ (that is, we are using here that $5 \cdot 5 \equiv 1 \pmod{8}$).