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Supplement on Calculating Inverses:
• Basic Thoughts: One reason to use the Chinese Remainder Theorem in certain problems

is that it allows you to take advantage of using smaller moduli in your work. For this reason, it is
good to know how to compute inverses for smaller moduli. We describe three approaches here. In
each case, we are interested in computing an x ∈ Z such that ax ≡ 1 (mod n), where a and n are
given integers with n > 1. Further, we suppose gcd(a, n) = 1, since otherwise an inverse for a
(that is, an x satisfying ax ≡ 1 (mod n)) will not exist.

• Approach 1: Exhausting the Possibilities. Under the conditions above, there is an inverse
x ∈ {1, 2, . . . , n− 1}. Furthermore, the x is unique (that is, there is exactly one such x). Try each
such x one at a time until you get one that satisfies ax ≡ 1 (mod n).

• Approach 2: Focusing on the Moduli. Instead of looking at multiples of a (numbers
of the form ax), look at multiples of n (numbers of the form kn). For k = 1, 2, 3, . . . , consider
kn + 1. If kn + 1 is divisible by a, then let x = (kn + 1)/a so that ax = kn + 1 ≡ 1 (mod n).

• Approach 3: Negatives Playing a Positive Role. Proceed as in Approach 2, except
consider both kn + 1 and kn − 1. If kn + 1 is divisible by a, do the same as before. If kn − 1 is
divisible by a, then let x = −(kn− 1)/a so that ax = −(kn− 1) ≡ 1 (mod n).

• What works best? You should do what you feel comfortable with, but there is a reason
for mentioning Approach 2 and Approach 3. We know ax ≡ 1 (mod n) has a solution (since we
are considering the case that gcd(a, n) = 1). If x is the smallest positive solution that you get from
Approach 1, then ax ≤ a(n− 1). So in Approach 2, we can find k so that

kn + 1 = ax ≤ a(n− 1) < an =⇒ k < a.

Moreover, note that kn+1 = ax itself implies k < (a/n)x. This means that if a is small, then it is
really to your advantage to think of using Approach 2 instead of Approach 1. In Approach 1, you
might have to try n − 1 different values of x before you get one that satisfies ax ≡ 1 (mod n).
Since k < (a/n)x, you necessarily will have only a/n times as many choices for k to consider.
In Approach 3, the number of k to consider is decreased by a factor of 2 over Approach 2 (more-
or-less, though this is certainly not true if n = 2). However, for each k, there are two numbers to
ponder, both kn + 1 and kn − 1. A slight advantage of Approach 3 over Approach 2 is that the
multiples of n one looks at are kept smaller in Approach 3.

• Examples.
(1) Solve 3x ≡ 1 (mod 19). Approach 1 requires that we check x = 1, 2, . . . , 13. We can

stop at 13 since then 3 · 13 = 39 ≡ 1 (mod 19). For Approach 2, we check 19 + 1 = 20 and
2 · 19 + 1 = 39. Since 39 is divisible by 3, we stop and compute x = 39/3 = 13. For Approach 3,
we check 19 + 1 = 20 and 19 − 1 = 18. Since 18 is divisible by 3, we get x = −18/3 = −6
(which is the same as 13 modulo 19).

(2) Solve 51x ≡ 1 (mod 22). First, we observe that 51 ≡ 7 (mod 22). The problem then is
equivalent to solving 7x ≡ 1 (mod 22). Approach 1 requires that we check x = 1, 2, . . . , 19. We
stop at 19 since 7·19 = 133 ≡ 1 (mod 22). For Approach 2, we check 22+1, 2·22+1, . . . , 5·22+1
and 6 · 22 + 1. Since 6 · 22 + 1 = 133 is divisible by 7, we stop there and get x = 133/7 = 19.



For Approach 3, we check 22 + 1 and 22 − 1. Since 22 − 1 = 21 is divisible by 7, we obtain
x = −21/7 = −3 (which is the same as 19 modulo 22).

Homework:

(1) Solve 5x ≡ 1 (mod 18). Use each of the approaches mentioned.

(2) Solve 4x ≡ 1 (mod 49) using any approach you want. Check your work by checking directly
to see if the x you obtained satisfies 4x ≡ 1 (mod 49).

(3) Solve 67x ≡ 1 (mod 16) using any approach you want.


