
Math 580/780I Notes 8 Appendix

The following contains some useful information on primes of some general importance. In par-
ticular, some of the arguments (for example, that there exist arbitrarily long lists of consecutive
non-squarefree numbers and that the there exist squares that are arbitrarily large containing no
visible lattice points) from Notes 8 make use of the first result below.

• Theorem 1′. There exist infinitely many primes.

• Proof 1 (Euclid’s). Assume there are only finitely many primes, say p1, . . . , pr. Then the
number p1 · · · pr+1 is not divisible by any of the primes p1, . . . , pr, contradicting the Fundamental
Theorem of Arithmetic.

• Proof 2. The Fermat numbers Fn = 22
n
+ 1 are odd numbers > 1 satisfying

Fn+1 − 2 =
n∏

j=0

Fj.

Hence, they are relatively prime, so there must exist infinitely many primes.

• Theorem 2′. The sum of the reciprocal of the primes diverges.

• Proof. Assume
∑
p prime

1

p
converges. Then there is anN such that

∑
p prime
p>N

1

p
<

1

2
. Let p1, . . . , pr

denote the primes ≤ N . These primes, r and N are fixed throughout the rest of the argument. Let
L be a large integer. The number of positive integers ≤ 2L divisible by a prime > N is∑

p prime
p>N

2L

p
<

2L

2
= L.

The remaining ≥ L positive integers ≤ 2L can only have the prime factors p1, . . . , pr. If n is one
of these L numbers, then

n = pe11 p
e2
2 . . . perr ≤ 2L,

where each ej is a nonnegative integer. Since each pejj ≤ 2L, we see that ej ≤ log(2L)/ log(pj) ≤
log(2L)/ log 2. Since each ej satisfies 0 ≤ ej ≤ log(2L)/ log 2, the number of n of the form
pe11 p

e2
2 . . . perr above is

≤
(
log(2L)

log 2
+ 1

)r

≤
(
2 log(2L)

log 2

)r

≤
(
2 log(L2)

log 2

)r

=

(
4

log 2
logL

)r

.

Recall that we had L such numbers, so(
4

log 2
logL

)r

≥ L =⇒ (logL)r

L
≥
(
log 2

4

)r

.

This is true for every large L. Recall r is fixed. The last inequality implies

lim
L→∞

(logL)r

L
≥
(
log 2

4

)r

,



provided the limit exists (or use limsup intead of lim here). This contradicts that the above limit is
0 (by applying L’Hôpital’s rule r times). Hence, the sum of the reciprocals of the primes diverges.

• Comment:. Despite Theorem 2′, the sum of the reciprocals of every prime ever written
down or printed is < 4.

• Notation. The number of primes up to x is denoted π(x). The next result is known as
the Prime Number Theorem. In the late 1800’s and early 1900’s, it was commonly thought that
any proof of the Prime Number Theorem must make use of complex numbers. However, it is now
known that this is not the case. Nevertheless, the proof of the following is beyond the scope of this
course.

• Theorem 3′. The value of π(x) satisfies

lim
x→∞

π(x)

x/ log x
= 1.

• Below are plots of y = π(x) in blue and y = x/ log x (in red), with the second one depicting
the plots with the units in the x and y direction the same.

Homework:
(1) Give a proof of Theorem 1′ by showing that, for every integer n > 1, there is a prime > n. Use
an argument similar to the first proof of Theorem 1′ but that uses n! + 1 rather than p1 · · · pr + 1.

(2) Explain why there are about the same number of primes between x and 2x as there are primes
up to x. More precisely, show that Theorem 3′ implies

lim
x→∞

π(2x)− π(x)
π(x)

= 1.

Challenge Problem 1:
Using Theorem 2′, show that there are at least

√
N primes up to N for infinitely many positive

integers N . Hint: Assume otherwise. Then, for every large positive integer k, the number of
primes in the interval (2k, 2k+1] is ≤

√
2k+1 =

√
2 k+1. What does this mean about the sum of the

reciprocals of the primes in the interval (2k, 2k+1] ? Finally, note that∑
p prime

1

p
=
∞∑
k=0

( ∑
p prime

2k<p≤2k+1

1

p

)
.


