
Math 580/780I Notes 8

The Chinese Remainder Theorem:
• Theorem 14. Let m1, . . . ,mk be pairwise relatively prime positive integers. Let b1, . . . , bk

be arbitrary integers. Then the system

x ≡ b1 (mod m1)

...
x ≡ bk (mod mk)

has a unique solution modulo m1 · · ·mk.

• Proof (Constructive): Let M = m1 · · ·mk. For j ∈ {1, 2, . . . , k}, define Mj = M/mj . If
i and j are in {1, 2, . . . , k}with i 6= j, then (mi, mj) = 1. It follows that for each j ∈ {1, 2, . . . , k},
(Mj, mj) = 1 so that there is an M ′

j ∈ Z such that

MjM
′
j ≡ 1 (mod mj).

We set x =
∑k

j=1 bjMjM
′
j . Then

x ≡ bjMjM
′
j ≡ bj (mod mj) for j ∈ {1, 2, . . . , k}.

This proves the existence of a solution to the system of congruences in the statement of the theorem.
For uniqueness, suppose that y also satisfies y ≡ bj (mod mj) for each j ∈ {1, 2, . . . , k}.

Then y− x ≡ 0 (mod mj) for each such j, and we deduce that each mj divides y− x. As the mj

are relatively prime, we obtain M |(y − x). In other words, y ≡ x (mod m1 · · ·mk).

• Examples.
(1) Solve 17x ≡ 3 (mod 210) by using the Chinese Remainder Theorem. Use that 210 =

2 × 3 × 5 × 7 and observe that solving 17x ≡ 3 (mod 210) is equivalent to solving the system
x ≡ 1 (mod 2), x ≡ 0 (mod 3), x ≡ −1 (mod 5), and x ≡ 1 (mod 7). The latter is equivalent
to x ≡ 1 (mod 14) and x ≡ 9 (mod 15). Therefore,

x ≡ 1× 15× 1 + 9× 14× (−1) ≡ −111 ≡ 99 (mod 210).

(2) Solve each system of congruences below. In other words, determine those integers x that
satisfy all of the congruences in each of the systems. (These are to be done in class. Note that one
system does not have any solutions.)

System 1 System 2 System 3

x ≡ 1 (mod 21)

x ≡ 3 (mod 10)

x ≡ 5 (mod 9)

x ≡ 4 (mod 28)

x ≡ 4 (mod 21)

x ≡ 5 (mod 12)

x ≡ 3 (mod 10)

x ≡ 11 (mod 21)

(3) Prove that there exists a positive integer k for which 2nk + 1 is composite for all positive
integers n. (It is known that k = 78557 has this property and it is an open problem to determine



whether or not 78557 is the smallest such k.) We use the Fermat numbers Fn = 22n
+1. Recall that

Fn is prime for 0 ≤ n ≤ 4 and F5 is composite with 641 a “proper” divisor. Explain the following
implications:

n ≡ 1 (mod 2) =⇒ 2nk + 1 ≡ 0 (mod 3) provided k ≡ 1 (mod 3),

n ≡ 2 (mod 4) =⇒ 2nk + 1 ≡ 0 (mod 5) provided k ≡ 1 (mod 5),

n ≡ 4 (mod 8) =⇒ 2nk + 1 ≡ 0 (mod 17) provided k ≡ 1 (mod 17),

n ≡ 8 (mod 16) =⇒ 2nk + 1 ≡ 0 (mod 257) provided k ≡ 1 (mod 257),

n ≡ 16 (mod 32) =⇒ 2nk + 1 ≡ 0 (mod 65537) provided k ≡ 1 (mod 65537),

n ≡ 32 (mod 64) =⇒ 2nk + 1 ≡ 0 (mod 641) provided k ≡ 1 (mod 641),

n ≡ 0 (mod 64) =⇒ 2nk + 1 ≡ 0 (mod F5/641) provided k ≡ −1 (mod F5/641).

By the Chinese Remainder Theorem, there are infinitely many positive integers k satisfying the
conditions on k on the right above (note that the last modulus is relatively prime to the others).
Also, every integer n can be seen to satisfy at least one of the congruences involving n on the left.
It follows that there are infinitely many positive integers k such that for every positive integer n,
the number 2nk + 1 is divisible by one of 3, 5, 17, 257, 65537, 641, and F5/641. If k is sufficiently
large with this property, then it will suffice for a value of k for this example

• Comments: If every integer satisfies at least one of a set of congruences x ≡ aj (mod mj),
for j = 1, . . . , k, then the congruences are said to form a covering of the integers. It is unkown
whether or not there is a covering consisting of distinct odd moduli > 1. Also, it is not known
whether or not there is a constant C > 0 such that every covering using distinct moduli contains a
modulus < C.

Homework:
(1) Determine the integers that satisfy the indicated congruence.

(a) 17x ≡ 11 (mod 180)

(b) 17x ≡ 10 (mod 180)

(2) Solve the system of congruences below. In other words, determine those integers x that satisfy
all of the congruences.

x ≡ 1 (mod 3)

x ≡ 2 (mod 5)

x ≡ 3 (mod 11)

(3) Solve the system of congruences below.

x ≡ 1 (mod 6)

x ≡ 2 (mod 7)

x ≡ 3 (mod 8)

(4) Find the smallest positive integer n > 2 such that 2 divides n, 3 divides n + 1, 4 divides n + 2,
5 divides n + 3, and 6 divides n + 4. Prove your answer is the least such n.



(5) A squarefree number is a positive integer n which is not divisible by a square > 1. For
example, 1, 2, 3, 5, and 6 are squarefree but 4, 8, 9, and 12 are not. Let k be an arbitrary positive
integer. Prove that there is a positive integer m such that m + 1, m + 2, . . . ,m + k are each NOT
squarefree. (Use that there are infinitely many primes.)

(6) Calculate the remainder when the number 123456789101112 . . . 20092010 is divided by 180.

Challenge Problem 1:
Calculate the remainder when the number 123456789101112 . . . 19781979 is divided by 1980.

Challenge Problem 2:
If a and b are integers, then the point (a, b) is called a lattice point. A visible lattice point is one

for which gcd(a, b) = 1 (it is visible from the origin). Prove that there are circles (or squares) in
the plane which are arbitrarily large and have the property that each lattice point in the circles (or
squares) is not visible. (Use that there are infinitely many primes.)


