Math 580/780I Notes 7

Euler's Theorem and Wilson's Theorem:

• Definition and Notation. For a positive integer n, we define $\phi(n)$ to be the number of positive integers $\leq n$ which are relatively prime to n. The function ϕ is called Euler's ϕ -function.

• Examples. $\phi(1) = 1$, $\phi(2) = 1$, $\phi(3) = 2$, $\phi(4) = 2$, $\phi(p) = p - 1$ for every prime p, and $\phi(pq) = (p-1)(q-1)$ for all primes p and q

• Theorem 12 (Euler). For every positive integer n and every integer a relatively prime to n, we have $a^{\phi(n)} \equiv 1 \pmod{n}$.

• **Proof:** If n = 1, the result is clear. We suppose as we may then that n > 1. Let $a_1, a_2, \ldots, a_{\phi(n)}$ be the $\phi(n)$ positive integers $\leq n$ relatively prime to n. Consider the numbers

$$a_1 a, a_2 a, \dots, a_{\phi(n)} a. \tag{(*)}$$

Note that no two numbers in (*) are congruent modulo n since (a, n) = 1 and $a_i a \equiv a_j a \pmod{n}$ implies $a_i \equiv a_j \pmod{n}$ so that i = j. Now, fix $j \in \{1, 2, \dots, \phi(n)\}$. There are integers q and rsuch that $a_j a = nq + r$ and $0 \le r < n$. Since $(a_j a, n) = 1$ and n > 1, we obtain $r \ne 0$ and (r, n) =1. Thus, $r = a_k$ for some $k \in \{1, 2, \dots, \phi(n)\}$. Hence, for each $j \in \{1, 2, \dots, \phi(n)\}$, there is a $k \in \{1, 2, \dots, \phi(n)\}$ for which $a_j a \equiv a_k \pmod{n}$. Since the numbers $a_j a$ are distinct modulo n, we deduce that the numbers in (*) are precisely $a_1, a_2, \dots, a_{\phi(n)}$ in some order. Therefore,

$$a_1a_2\cdots a_{\phi(n)} \equiv (a_1a)(a_2a)\cdots (a_{\phi(n)}a) \equiv a^{\phi(n)}a_1a_2\cdots a_{\phi(n)} \pmod{n}.$$

Since $gcd(a_1a_2\cdots a_{\phi(n)}, n) = 1$, we obtain $a^{\phi(n)} \equiv 1 \pmod{n}$ as desired.

• Theorem 13 (Wilson). For every prime p, $(p-1)! \equiv -1 \pmod{p}$.

• **Proof:** If p = 2, the result is clear. We consider now the case p > 2. Let $S = \{1, 2, ..., p-1\}$. For every $a \in S$, there is a unique $a' \in S$ satisfying $a'a \equiv 1 \pmod{p}$. If a = 1 or a = p - 1, then a' = a. The converse statement also holds since a' = a implies $(a - 1)(a + 1) = a^2 - 1$ is divisible by p so that $a \equiv 1 \pmod{p}$ or $a \equiv p - 1 \pmod{p}$. The remaining elements of S can be grouped in (p - 3)/2 pairs (a, a'), say $(a_1, a'_1), \ldots, (a_{(p-3)/2}, a'_{(p-3)/2})$, so that

$$(p-1)! \equiv 1 \times (p-1) \times (a_1 a'_1) \cdots (a_{(p-3)/2} a'_{(p-3)/2}) \equiv 1 \times (p-1) \equiv -1 \pmod{p}.$$

• Comment: The converse of Wilson's Theorem also holds.

Homework:

(1) Calculate $\phi(12)$ and $\phi(18)$.

(2) Given that $\phi(825) = 400$, what is the remainder when $2^{10012010}$ is divided by 825?

(3) Let p be a prime. Explain why $(p-2)! \equiv 1 \pmod{p}$.

(4) Show that $a^{18} \equiv 1 \pmod{756}$ for every integer *a* which is relatively prime to 756. (Note that $\phi(756) = 216$ is significantly larger than 18.)