
Math 580/780I Notes 6

Fermat’s Little Theorem:
• Theorem 11. For any prime p and any integer a, ap − a is divisible by p.

• Comments: In other words, with p and a as above, ap ≡ a (mod p). The theorem is
equivalent to: if p is a prime and a is an integer with (a, p) = 1 (in other words, with p not dividing
a), then ap−1 ≡ 1 (mod p).

• Proof 1: Use induction. The theorem holds with a = 1. If it holds for a, then

(a+ 1)p =

p∑
j=0

(
p

j

)
aj ≡ ap + 1 ≡ a+ 1 (mod p).

This proves the theorem for positive integers. Since every integer is congruent to a positive integer
modulo p, the result follows.

• Proof 2: Again, we may suppose a > 0. Fix a colors. The number of necklaces with p
beads, each bead colored with one of the a colors (allowing repetitions), having at least two beads
colored differently is (ap − a)/p. Here, we count necklaces as distinct if one cannot be obtained
from the other by a rotation (we don’t allow flipping necklaces over). Thus, (ap − a)/p ∈ Z, and
the result follows.

• Fermat’s Little Theorem can be used for determining that a given integer N is composite
as follows:

(i) Check N for small prime factors (this step isn’t necessary but is reasonable).
(ii) WriteN in base 2 asN =

∑k
j=0 εj2

j with εj ∈ {0, 1} for each j and k = blogN/ log 2c+1.
(iii) Compute 22j

(mod N) by squaring.
(iv) Calculate m ∈ {0, 1, . . . , N − 1} such that

m ≡
k∏
j=0

2εj2
j ≡ 2N (mod N).

(v) If m 6= 2, then N is composite. Otherwise the test is inconclusive.

• Comments: The algorithm works for establishing that “most” composite numbers are
composite (i.e., for most composite numbers, m 6= 2). If m = 2, then one can check if 3N ≡ 3
(mod N). Note that the algorithm takes on the order of logN steps so that the algorithm is a
polynomial time algorithm (it runs in time that is polynomial in the length of the input - elaborate
on this). There are no polynomial time algorithms that determine conclusively whether an arbitrary
integer is composite.

• Definitions. A pseudoprime is a composite number n > 1 satisfying 2n ≡ 2 (mod n). A
probable prime is an integer n > 1 satisfying 2n ≡ 2 (mod n). (Explain the reasons behind these
definitions.)

• Examples. Explain why 341 = 11 × 31 is a pseudoprime. As indicated by the second
Challenge Problem below, one can show that Fn = 22n

+ 1 is a probable prime. (Note that for
n > 5, Fn is really probably not a prime.)



• Definition. An absolute pseudoprime (or a Carmichael number) is a composite number
n > 1 such that an ≡ a (mod n) for every integer a.

• Example. Explain why 561 = 3× 11× 17 is an absolute pseudoprime.

• Comment: Alford, Granville, and Pomerance have shown that there exist infinitely many
absolute pseudoprimes. The easier result that there exist infinitely many pseudoprimes is the Chal-
lenge Problem below.

Homework:
(1) Prove that 645 is a pseudoprime.

(2) Prove that 2010 is not a pseudoprime. In other words, explain why

22010 6≡ 2 (mod 2010).

(3) Justify that
2012010 ≡ 201 (mod 2010).

(4) Show that if k is an integer, then one of the two consecutive numbers k2010 − 1 and k2010 is
divisible by 31.

(5) Prove that 1105 is an absolute pseudoprime.

(6) Prove that 1729 is an absolute pseudoprime. (As a side note, this number is interesting in
another way. Observe that 1729 = 13 + 123 = 93 + 103. The number 1729 is the smallest positive
integer that is the sum of two cubes in two different ways.)

Challenge Problem 1:
Prove that if n is a pseudoprime, then 2n − 1 is a pseudoprime. (Note that this implies that

there are infinitely many pseudoprimes.)

Challenge Problem 2:
Prove that, for every positive integer n, Fn = 22n

+ 1 is a probable prime.


