Math 580/780I Notes 2

Divisibility Basics:

• Definition. Let a and b be integers. Then a divides b (or a is a divisor of b or b is divisible by a) if there is an integer c such that b = ac.

• Notation. We write a | b if a divides b, and we write $a \nmid b$ if a does not divide b.

• Definition. An integer p is prime (or is a prime) if it is > 1 and divisible by no other positive integer other than 1 and itself.

• The division algorithm.

Theorem 4. If $a \neq 0$ and b are any integers, then there exist unique integers q (called the quotient) and r (called the remainder) with $0 \leq r < |a|$ such that b = qa + r.

• **Proof.** Let r be the least non-negative integer in the double sequence

$$\ldots, b-2a, b-a, b, b+a, b+2a, \ldots$$

Let q be such that b - qa = r. Since (b - qa) - |a| is in the double sequence and < b - qa, we have (b - qa) - |a| < 0. Thus, r < |a|. Also, $r \ge 0$. This proves the existence of q and r as in the theorem.

For $j \in \{1, 2\}$, suppose q_j and r_j are integers such that $b = q_j a + r_j$ and $0 \le r_j < |a|$. Then

$$(q_1 - q_2)a - (r_1 - r_2) = 0.$$
(*)

This implies $a|(r_1 - r_2)$. On the other hand, $r_1 - r_2 \in (-|a|, |a|)$. Hence, $r_1 = r_2$. Now, (*) implies $q_1 = q_2$, establishing the uniqueness of q and r as in the theorem.

• Definition and Notation. Let n and m be integers with at least one non-zero. The greatest common divisor of n and m is the greatest integer dividing both n and m. We denote it by gcd(n,m) or (n,m).

• Note that if n is a non-zero integer, then (0, n) = |n|.

• **Theorem 5.** If a and b are integers with at least one non-zero, then there exist integers x_0 and y_0 such that $ax_0 + by_0 = (a, b)$. Moreover,

$$\{ax + by : x, y \in \mathbb{Z}\} = \{k(a, b) : k \in \mathbb{Z}\}.$$

• **Proof.** Let $S = \{ax + by : x, y \in \mathbb{Z}\}$. Let d denote the smallest positive integer in S. Let x_0 and y_0 be integers for which $d = ax_0 + by_0$. Theorem 5 follows from the following claims. Claim 1. $\{kd : k \in \mathbb{Z}\} \subset S$.

Reason: Clear.

Claim 2. $S \subseteq \{kd : k \in \mathbb{Z}\}.$

Reason: Let $u = ax' + by' \in S$. By Theorem 4, we have integers q and r with u = dq + r and $0 \le r < d$. On the other hand,

$$r = u - dq = (ax' + by') - (ax_0 + by_0)q = a(x' - x_0q) + b(y' - y_0q) \in S.$$

It follows that r = 0 and u = qd.

Claim 3. d|a and d|b.

Reason: Use Claim 2 together with $a \in S$ and $b \in S$.

Claim 4. d = (a, b).

Reason: Since $ax_0 + by_0 = d$, (a, b)|d so that $(a, b) \le d$. Since d|a and d|b, d is a common divisor of a and b. By the definition of greatest common divisor, d = (a, b).

Homework:

- (1) What are the divisors of 6? What are the divisors of 12?
- (2) What are the divisors of 2^{2010} ? How many are there?
- (3) Let a, b, c, and d denote positive integers. Explain why each of the following are true.
 (a) If a|b and b|c, then a|c.
 - (b) If ac|bc, then a|b.
 - (c) If a|b and c|d, then ac|bd.

(4) Let n be an integer. Explain why n(n+5)(2n+11) is divisible by 3. In other words, explain why one of n, n+5 and 2n+11 must be divisible by 3. (Hint: Use Theorem 4 with a = 3 and b = n.)

(5) Prove that the product of any 3 consecutive integers is divisible by 6.

Challenge Problem:

Let n be a positive integer. Prove that n divides (n-1)! unless n is a prime or $n \in \{1, 4\}$. Be careful when handling the case that n is a square.