
Math 580/780I Notes 14

Primitive Roots:
• Definition. Let a be an integer, and let n be a positive integer with gcd(a, n) = 1. The

order of a modulo n is the least positive integer d such that ad ≡ 1 (mod n).

• Comment: With a and n as above, the order of amodulo n exists since aφ(n) ≡ 1 (mod n).
Furthermore, the order of a modulo n divides φ(n). To see this, consider integers x and y for
which dx + φ(n)y = gcd(d, φ(n)), where d is the order of a modulo n. Then it follows easily
that agcd(d,φ(n)) ≡ 1 (mod n), and the definition of d implies that d = gcd(d, φ(n)). This in turn
implies d|φ(n) as claimed.

• Definition. If an integer a has order φ(n) modulo a positive integer n, then we say that a is
a primitive root modulo n.

• Comment: Given a positive integer n, it is not necessarily the case that there exists a
primitive root modulo n. There exists a primitive root modulo n if and only if n is 2, 4, pr, or 2pr

where p denotes an odd prime and r denotes a positive integer. The remainder of this section deals
with the case where n is a prime, and in this case we establish the existence of a primitive root.

• Theorem 19. There is a primitive root modulo p for every prime p. Furthermore, there are
exactly φ(p− 1) incongruent primitive roots modulo p.

• Lemma. Let n denote a positive integer. Then∑
d|n

φ(d) = n,

where the summation is over all positive divisors of n.

• Proof of Lemma. Write n = pe11 p
e2
2 · · · per

r where the pj are distinct primes and the ej are
positive integers. Note that

∑
d|n

φ(d) =
r∏
j=1

(
1 + φ(pj) + · · ·+ φ(p

ej

j )
)
.

Since,
1 + φ(pj) + · · ·+ φ(p

ej

j ) = 1 + (pj − 1)(1 + pj + · · ·+ p
ej−1
j ) = p

ej

j ,

we deduce that ∑
d|n

φ(d) =
r∏
j=1

p
ej

j = n.

• Theorem 19 is an apparent consequence of the next more general theorem.
Theorem 20. Let p be a prime, and let d be a positive divisor of p − 1. Then the number of

incongruent integers of order d modulo p is φ(d).

• Proof of Theorem 20. We first show that xd − 1 ≡ 0 (mod p) has exactly d incongruent
solutions modulo p. By Lagrange’s Theorem, it suffices to show that there is at least d incongruent
solutions. Assume there are < d incongruent solutions. Observe that xp−1 − 1 = (xd − 1)g(x) for



some g(x) ∈ Z[x] for degree p− 1− d. A number is a root of xp−1 − 1 ≡ 0 (mod p) if and only
if it is a root of xd − 1 ≡ 0 (mod p) or g(x) ≡ 0 (mod p). By Lagrange’s Theorem, g(x) ≡ 0
(mod p) has at most p − 1 − d incongruent solutions modulo p. Hence, xp−1 − 1 ≡ 0 (mod p)
has < d + (p − 1 − d) = p − 1 incongruent solutions modulo p. This contradicts Fermat’s Little
Theorem. Hence, xd − 1 ≡ 0 (mod p) must have exactly d incongruent solutions modulo p.

Next, suppose a has order d′ modulo p. We show that a is a root of xd− 1 ≡ 0 (mod p) if and
only if d′|d. If d′|d, then d = kd′ for some integer k so that

ad − 1 ≡ (ad
′
)k − 1 ≡ 1− 1 ≡ 0 (mod p).

Hence, a is a root of xd−1 ≡ 0 (mod p). Now suppose we know a is a root of xd−1 ≡ 0 (mod p)
and we want to prove d′|d. There are integers q and r such that d = d′q + r and 0 ≤ r < d. Since

1 ≡ ad ≡ ad
′q+r ≡ (ad

′
)qar ≡ ar (mod p),

we deduce that r = 0 and, hence, d′|d as desired.
We proceed to prove the theorem by induction. If d = 1, then the theorem is clear. Suppose

the theorem holds for d < D. Then using the above information (including the Lemma), we have

D = |{a : aD − 1 ≡ 0 (mod p), 0 ≤ a < p}|

=
∑
d′|D

|{a : a has order d′, 0 ≤ a < p}|

=
∑
d′|D
d′<D

φ(d′) + |{a : a has order D, 0 ≤ a < p}|

=
∑
d′|D

φ(d′)− φ(D) + |{a : a has order D, 0 ≤ a < p}|

= D − φ(D) + |{a : a has order D, 0 ≤ a < p}|.

The theorem follows.

• Comment: If g is a primitive root modulo p, then the numbers 1, g, g2, . . . , gp−2 are in-
congruent modulo p. It follows that the numbers 1, g, g2, . . . , gp−2 are congruent modulo p to the
numbers 1, 2, . . . , p− 1 in some order.

• Corollary. For all odd primes p, there are exactly (p− 1)/2 non-zero incongruent squares
modulo p.

• Proof. If x ≡ a2 (mod p) for some integer a with a 6≡ 0 (mod p), then x(p−1)/2 ≡
ap−1 ≡ 1 (mod p). Hence, Lagrange’s Theorem implies that there are ≤ (p − 1)/2 non-zero
incongruent squares modulo p. On the other hand, if g is a primitive root modulo p, then the
numbers 1, g2, g4, . . . , gp−3 form (p− 1)/2 non-zero incongruent squares modulo p.

• Example. Illustrate the above by considering p = 7. Here, 3 is a primitive root, and the
non-zero squares are 1, 2, and 4.

• Comment: It is not known whether 2 is a primitive root modulo p for infinitely many
primes p. On the other hand, it is known that at least one of 2, 3, and 5 is a primitive root modulo
p for infinitely many primes p.



Homework:
(1) What is the order of 2 modulo 7? What is the order of 3 modulo 7?

(2) Determine whether 2 is a primitive root modulo 19.

(3) What are the cubes modulo 7? What are the cubes modulo 11? What are the cubes modulo
47?

(4) What are the fifth powers modulo 7? What are the fifth powers modulo 11? What are the fifth
powers modulo 47?

(5) Let a be an integer, and let p be a prime such that p - a. Show that a is a square modulo p if
and only if a(p−1)/2 ≡ 1 (mod p).

(6) Let a be an integer, and let p be a prime such that p - a. Show that if a is not a square modulo
a prime p, then a(p−1)/2 ≡ −1 (mod p).

(7) Let p and q be primes with p = 2q + 1. Let a be an integer. Explain why a is a primitive root
modulo p if and only if

a2 6≡ 1 (mod p) and aq 6≡ 1 (mod p).

(8) Let p be a prime, and let q1, . . . , qr be the distinct primes dividing p − 1. Let a be an integer
such that p - a. Show that if

a(p−1)/qj 6≡ 1 (mod p), for each j ∈ {1, 2, . . . , r},

then a is a primitive root modulo p.

(9) Let p be a prime, let g be a primitive root modulo p, and let k be an integer. Prove that gk is a
primitive root modulo p if and only if gcd(k, p− 1) = 1.


