Math 580/780I Notes 13

Lagrange's Theorem:

• **Theorem 18.** Let f(x) be a monic polynomial in $\mathbb{Z}[x]$. In other words, f(x) has integer coefficients and leading coefficient 1. Let p be a prime, and let $n = \deg f$. Then the congruence

$$f(x) \equiv 0 \pmod{p} \tag{(*)}$$

has at most n incongruent roots modulo p.

• **Proof.** If n = 0, then, since f(x) is monic, we have f(x) = 1. In this case, f(x) has 0 roots, and we are done. Let m be a positive integer, and suppose the theorem holds for n = m - 1. Consider $f(x) \in \mathbb{Z}[x]$ with deg f = m. If (*) has no solutions, then the desired conclusion follows for f(x). Suppose then that (*) has a solution, say a. Hence, there is an integer k such that f(a) = kp. This implies that x - a is a factor of f(x) - kp (by the Remainder Theorem). In other words, there is a $g(x) \in \mathbb{Z}[x]$ such that f(x) = (x - a)g(x) + kp. Observe that deg g = m - 1. Also, $f(x) \equiv g(x)(x - a) \pmod{p}$. We deduce that $f(b) \equiv 0 \pmod{p}$ if and only if either $g(b) \equiv 0 \pmod{p}$ or $b \equiv a \pmod{p}$. Since deg g = m - 1, we deduce that there are at most m - 1 incongruent integers b modulo p that can satisfy $g(b) \equiv 0 \pmod{p}$. The theorem follows.

• Comment: Theorem 18 is not true if the prime p is replaced by a composite number n. For example, $x^2 - 1 \equiv 0 \pmod{8}$ has 4 incongruent solutions modulo 8. Also, $3x \equiv 0 \pmod{9}$ has 3 incongruent solutions modulo 9.

• Corollary. Let $f(x) \in \mathbb{Z}[x]$ be a monic polynomial of degree n, and let p be a prime. Suppose $f(x) \equiv 0 \pmod{p}$ has n incongruent solutions modulo p, say a_1, \ldots, a_n . Then

$$f(x) \equiv (x - a_1) \cdots (x - a_n) \pmod{p}.$$

• **Proof.** Let $g(x) = f(x) - (x - a_1) \cdots (x - a_n)$. Since f(x) is monic, g(x) has at most degree n - 1. We will use that g(x) has each of a_1, a_2, \ldots, a_n as roots modulo p. The idea is that this will contradict Theorem 18 since g(x) has degree at most n - 1. However, some further justification is needed as g(x) may not be monic so that Theorem 18 may not apply.

If we show that g(x) is identically 0 modulo p, then we are done. So assume there is a coefficient of g(x) that is not divisible by p. Let b be the coefficient of the highest degree term of g(x) that is not divisible by p. In other words,

$$g(x) \equiv bx^m +$$
(smaller degree terms) (mod p),

where again we note that $m \le n-1$. Let b' be an inverse for b mod p. Finally, let h(x) be a monic polynomial in $\mathbb{Z}[x]$ satisfying $h(x) \equiv b'g(x) \pmod{p}$. Observe that h(x) exists since $b'b \equiv 1 \pmod{p}$. Also, $h(a_j) \equiv b'g(a_j) \equiv 0 \pmod{p}$ for each $j \in \{1, 2, \dots, n\}$. On the other hand, $\deg h = \deg g \le n-1$. Since h(x) is a monic polynomial of degree $\le n-1$ with n roots modulo p, we get a contradiction to Theorem 18. Hence, g(x) is identically 0 modulo p, completing the proof.

• Wilson's theorem can be established with the aid of Theorem 18. Let p be a prime. We want to prove $(p-1)! \equiv -1 \pmod{p}$. Let $f(x) = x^{p-1} - 1$. By Fermat's Little Theorem and the

above Corollary, we deduce

$$f(x) \equiv (x-1)(x-2)\cdots(x-(p-1)) \pmod{p}$$

Letting x = 0, we obtain the desired result.

Homework:

(1) (a) Let $f(x) = x^2 - 3$. Determine the primes $p \le 13$ for which f(x) has a root modulo p and how many incongruent roots f(x) has modulo p. This should be a direct computation.

(b) For all primes p > 3, explain why f(x) either has 2 incongruent roots modulo p or f(x) has 0 incongruent roots modulo p. Clarify why your explanation does not work when p = 2 and when p = 3.

(2) For a prime p, let

$$S_p = 1^2 + 2^2 + 3^2 + \dots + (p-2)^2 + (p-1)^2.$$

So

$$S_2 = 1^2$$
, $S_3 = 1^2 + 2^2$, $S_5 = 1^2 + 2^2 + 3^2 + 4^2$,...

Observe that $S_2 \equiv 1 \pmod{2}$ and $S_3 \equiv 2 \pmod{3}$. Explain why S_p is divisible by p for each p > 3. (Hint: Look at the proof of Wilson's Theorem above and think elementary symmetric functions.)