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Lagrange’s Theorem:
• Theorem 18. Let f(x) be a monic polynomial in Z[x]. In other words, f(x) has integer

coefficients and leading coefficient 1. Let p be a prime, and let n = deg f . Then the congruence

f(x) ≡ 0 (mod p) (∗)

has at most n incongruent roots modulo p.

• Proof. If n = 0, then, since f(x) is monic, we have f(x) = 1 . In this case, f(x) has 0
roots, and we are done. Let m be a positive integer, and suppose the theorem holds for n = m− 1.
Consider f(x) ∈ Z[x] with deg f = m. If (∗) has no solutions, then the desired conclusion follows
for f(x). Suppose then that (∗) has a solution, say a. Hence, there is an integer k such that
f(a) = kp. This implies that x− a is a factor of f(x)− kp (by the Remainder Theorem). In other
words, there is a g(x) ∈ Z[x] such that f(x) = (x − a)g(x) + kp. Observe that deg g = m − 1.
Also, f(x) ≡ g(x)(x − a) (mod p). We deduce that f(b) ≡ 0 (mod p) if and only if either
g(b) ≡ 0 (mod p) or b ≡ a (mod p). Since deg g = m − 1, we deduce that there are at most
m− 1 incongruent integers b modulo p that can satisfy g(b) ≡ 0 (mod p). The theorem follows.

• Comment: Theorem 18 is not true if the prime p is replaced by a composite number n. For
example, x2 − 1 ≡ 0 (mod 8) has 4 incongruent solutions modulo 8. Also, 3x ≡ 0 (mod 9) has
3 incongruent solutions modulo 9.

• Corollary. Let f(x) ∈ Z[x] be a monic polynomial of degree n, and let p be a prime.
Suppose f(x) ≡ 0 (mod p) has n incongruent solutions modulo p, say a1, . . . , an. Then

f(x) ≡ (x− a1) · · · (x− an) (mod p).

• Proof. Let g(x) = f(x) − (x − a1) · · · (x − an). Since f(x) is monic, g(x) has at most
degree n − 1. We will use that g(x) has each of a1, a2, . . . , an as roots modulo p. The idea is
that this will contradict Theorem 18 since g(x) has degree at most n − 1. However, some further
justification is needed as g(x) may not be monic so that Theorem 18 may not apply.

If we show that g(x) is identically 0 modulo p, then we are done. So assume there is a coeffi-
cient of g(x) that is not divisible by p. Let b be the coefficient of the highest degree term of g(x)
that is not divisible by p. In other words,

g(x) ≡ bxm + (smaller degree terms) (mod p),

where again we note that m ≤ n− 1. Let b′ be an inverse for b mod p. Finally, let h(x) be a monic
polynomial in Z[x] satisfying h(x) ≡ b′g(x) (mod p). Observe that h(x) exists since b′b ≡ 1
(mod p). Also, h(aj) ≡ b′g(aj) ≡ 0 (mod p) for each j ∈ {1, 2, . . . , n}. On the other hand,
deg h = deg g ≤ n− 1. Since h(x) is a monic polynomial of degree ≤ n− 1 with n roots modulo
p, we get a contradiction to Theorem 18. Hence, g(x) is identically 0 modulo p, completing the
proof.

• Wilson’s theorem can be established with the aid of Theorem 18. Let p be a prime. We
want to prove (p− 1)! ≡ −1 (mod p). Let f(x) = xp−1 − 1. By Fermat’s Little Theorem and the



above Corollary, we deduce

f(x) ≡ (x− 1)(x− 2) · · · (x− (p− 1)) (mod p).

Letting x = 0, we obtain the desired result.

Homework:
(1) (a) Let f(x) = x2 − 3. Determine the primes p ≤ 13 for which f(x) has a root modulo p and
how many incongruent roots f(x) has modulo p. This should be a direct computation.

(b) For all primes p > 3, explain why f(x) either has 2 incongruent roots modulo p or f(x)
has 0 incongruent roots modulo p. Clarify why your explanation does not work when p = 2 and
when p = 3.

(2) For a prime p, let

Sp = 12 + 22 + 32 + · · ·+ (p− 2)2 + (p− 1)2.

So
S2 = 12, S3 = 12 + 22, S5 = 12 + 22 + 32 + 42, . . . .

Observe that S2 ≡ 1 (mod 2) and S3 ≡ 2 (mod 3). Explain why Sp is divisible by p for each
p > 3. (Hint: Look at the proof of Wilson’s Theorem above and think elementary symmetric
functions.)


