
Math 580/780I Notes 12

Polynomials Modulo Integers, A First Look at Quadratics:
• Theorem 16. Let p be an odd prime. The congruence x2 + 1 ≡ 0 (mod p) has a solution

if and only if p ≡ 1 (mod 4).

• Proof: First suppose p ≡ 1 (mod 4). Then p = 4k + 1 for some positive integer k. Thus,
(p− 1)/2 is even. By Wilson’s Theorem, we obtain
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Thus, in this case, x2 + 1 ≡ 0 (mod p) has the solution x = ((p− 1)/2)!.
Now, suppose p ≡ 3 (mod 4). Then (p − 1)/2 is odd. Assume there is an integer x such that

x2 + 1 ≡ 0 (mod p). Then x2 ≡ −1 (mod p) implies (since (p− 1)/2 is odd) that

xp−1 ≡ (x2)(p−1)/2 ≡ (−1)(p−1)/2 ≡ −1 (mod p).

This contradicts Fermat’s Little Theorem. Hence, the theorem follows.

• Corollary. There exist infinitely many primes ≡ 1 (mod 4).

• Before proving the corollary, we establish

Theorem 17. There exist infinitely many primes.

Proof 1 (Euclid’s). Assume there are only finitely many primes, say p1, . . . , pr. Then the number
p1 · · · pr+1 is not divisible by any of the primes p1, . . . , pr, contradicting the Fundamental Theorem
of Arithmetic.

Proof 2. The Fermat numbers Fn = 22n
+ 1 are odd numbers > 1 satisfying

Fn+1 − 2 =
n∏

j=0

Fj.

Hence, they are relatively prime, so there must exist infinitely many primes.

• Proof of Corollary. Consider the numbers n2 + 1 where n is an integer. By Theorem 16,
the only primes dividing any such number are 2 and primes ≡ 1 (mod 4). Thus, it suffices to
show there exist infinitely many primes dividing numbers of the form n2 + 1. Assume otherwise.
Let p1, . . . , pr be the primes which divide numbers of the form n2 + 1. Since (p1 · · · pr)

2 + 1 is not
divisible by any of the primes p1, . . . , pr, we obtain a contradiction.

Homework:
(1) (a) Let p1, . . . , pr be r primes. Show that

2(p1−1)(p2−1)···(pr−1) + 1



is not divisible by any of the primes p1, . . . , pr.
(b) Explain why part (a) implies that there are infinitely many primes.

(2) Use an argument similar to Euclid’s to prove there exist infinitely many primes ≡ 3 (mod 4).
(Hint: If p1, . . . , pr are primes > 3 that are ≡ 3 (mod 4), then what can you say about the odd
number 4p1 · · · pr + 3?)

(3) Prove that there are infinitely many primes that are ≡ 2 (mod 3).

(4) (a) Let n be an integer. Explain why Theorem 16 implies that each prime divisor of 16n4 + 1
is either of the form 8k + 1 for some integer k or of the form 8k + 5 for some integer k.

(b) Assume p is a prime of the form 8k+5, where k ∈ Z, that divides 16n4+1 for some integer
n. Explain why

(2n)p−1 ≡ −1 (mod p).

(c) Let n be an integer. Why do parts (a) and (b) imply that every prime divisor of 16n4 + 1 is
of the form 8k + 1 for some integer k?

(d) Prove that there are infinitely many primes ≡ 1 (mod 8).

(5) Explain why are there infinitely many primes 6≡ 1 (mod 8).


