
Math 580/780I Notes 10

Euler’s Phi Function Revisited:
• Recall φ(n) is the number of positive integers ≤ n that are relatively prime to n.

• Lemma 1. For every prime p and every positive integer k, φ(pk) = pk − pk−1.

• Proof. The number of multiples of p which are ≤ pk is pk−1. The result follows.

• Lemma 2. For relatively prime positive integers m and n, φ(mn) = φ(m)φ(n).

• Proof. If m = 1 or n = 1, then the result is clear; so we suppose both m > 1 and
n > 1. Let a1, . . . , aφ(m) denote the positive integers ≤ m which are relatively prime to m, and let
b1, . . . , bφ(n) denote the positive integers ≤ n which are relatively prime to n. Suppose now that
k ∈ {1, 2, . . . ,mn} and (k,mn) = 1. Define a and b by

k ≡ a (mod m), 0 ≤ a < m, k ≡ b (mod n), and 0 ≤ b < n.

Since k = a + tm for some integer t and since (k,m) = 1, we deduce that (a,m) = 1. Similarly,
(b, n) = 1. Hence, there are i ∈ {1, 2, . . . , φ(m)} and j ∈ {1, 2, . . . , φ(n)} such that

k ≡ ai (mod m) and k ≡ bj (mod n).

Since there are φ(m)φ(n) choices of pairs (i, j) and k is uniquely determined by the above con-
gruences (i.e., because of the Chinese Remainder Theorem), we get φ(mn) ≤ φ(m)φ(n).

Now, fix a pair (i, j) with i ∈ {1, 2, . . . , φ(m)} and j ∈ {1, 2, . . . , φ(n)}, and consider the
integer k ∈ {1, 2, . . . ,mn} (that exists by the Chinese Remainder Theorem) which satisfies k ≡ ai
(mod m) and k ≡ bj (mod n). There exists an integer t such that k = ai + tm so that, since
(ai,m) = 1, we obtain (k,m) = 1. Also, (k, n) = 1. Hence, (k,mn) = 1. Therefore, since each
pair (i, j) corresponds to a different k, φ(mn) ≥ φ(m)φ(n). Combining the inequalities, we get
φ(mn) = φ(m)φ(n).
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• Proof. The first equality follows from Lemma 1 and Lemma 2 (using φ(n) = φ(pe11 )
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• Examples. Use the theorem to show that φ(100) = 40 and φ(140) = 48.

• A “sieve” proof (or a proof using the inclusion-exclusion principle) of Theorem 15 can
be given that doesn’t make use of the lemmas. Observe that a positive integer m is not relatively



prime to n if and only if m is divisible by some pj with j ∈ {1, 2, . . . , r}. For distinct j1, . . . , jk
in {1, 2, . . . , r}, the number of positive multiples of pj1 · · · pjk which are ≤ n is n/(pj1 · · · pjk).
The inclusion-exclusion principle implies that the number of positive integers ≤ n which are not
divisible by p1, . . . , pr−1, or pr is
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The theorem follows.

• Comments: An open problem due to Carmichael is to determine whether or not there is a
positive integer n such that if m is a positive integer different from n then φ(m) 6= φ(n). If such
an n exists, it is known that if must be > 101000. Some result in this direction can be obtained as
follows. Observe that n ≡ 0 (mod 2) since otherwise φ(n) = φ(2n). Now, n ≡ 0 (mod 4) since
otherwise φ(n) = φ(n/2). Now, n ≡ 0 (mod 3) since otherwise φ(n) = φ(3n/2); and n ≡ 0
(mod 9) since otherwise φ(n) = φ(2n/3). This approach can be extended (apparently indefinitely
as long as one is willing to consider branching off into different cases).

Homework:
(1) Calculate each of the following:

(a) φ(98)

(b) φ(120)

(c) φ(180)

(2) Note that 2010 = 2 · 3 · 5 · 67. What is the value of φ(2010)?

(3) What is the remainder when 2165 is divided by 165?

(4) Show that the remainder when 22010 is divided by 825 is 199?

(5) There are two positive integers n such that φ(n) = 2010. What are they?

(6) Explain why φ(1) = φ(2) = 1 is the only odd value of φ(n) as n varies over the positive
integers.

(7) Find all positive integers n ≤ 50 for which φ(n) is twice an odd number. Try to do this without
computing all values of φ(n) for n ≤ 50. (There should be 18.)

(8) Find all positive integers n ≤ 50 for which φ(n) has no odd prime divisor. Try to do this
without computing all values of φ(n) for n ≤ 50. (There should be 19.)

Challenge Problem:
Prove that if n is a positive integer as in the comment above, then n > 1030. (Hint: Eventually

consider two cases depending on whether 13|n or 13 - n.)


