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Test 2 Solutions

Test 2 (1992):

Part I:
(1) If A, B, and C are not distinct, then the conclusion that A, B, and C are collinear is clear.

Suppose now that A, B, and C are distinct. Recall that not all of x, y, and z are zero. Suppose
x 6= 0 (a similar argument can be made if y 6= 0 or z 6= 0). From xA + yB + zC = ~0, we
obtain A = (−y/x)B + (−z/x)C. Let t = −z/x. Since x+ y + z = 0,

1− t = 1−
(
− z

x

)
= 1 +

z

x
=
x+ z

x
= −y

x
.

Hence, A = (1− t)B + tC. By Theorem 1, A is on
←→
BC. Thus, A, B, and C are collinear.

(2) The square of the distance from N to MA is (N −MA)2 and the square of the distance from
N to MB is (N −MB)2. It therefore suffices to show that (N −MA)2 = (N −MB)2. Since
←→
CD and

←→
BA are perpendicular, (D − C)(A−B) = 0. We use that

D − C = (A+B + C +D)− (B + C)− (A+ C)

= 4N − 2MA − 2MB = 2
(
(N −MA) + (N −MB)

)
.

and A−B = (A+ C)− (B + C) = 2MB − 2MA = 2
(
(N −MA)− (N −MB)

)
Since (D − C)(A−B) = 0, we deduce

0 =
(
(N −MA) + (N −MB)

)(
(N −MA)− (N −MB)

)
= (N −MA)2 − (N −MB)2.

Hence, (N −MA)2 = (N −MB)2.

Part II:
(1) Not relevant to the current course.

(2) Let PA be the intersection of the altitude drawn from A to
←→
BC. Let PB be the intersection of

the altitude drawn from B to
←→
AC. Let PC be the intersection of the altitude drawn from C to←→

AB. Let D be the intersection of
←−→
APA and

←−→
BPB. Then

−−→
AD and

−−→
BC are perpendicular and−−→

BD and
−→
AC are perpendicular. Hence, (D − A)(C − B) = 0 and (D − B)(C − A) = 0.

Therefore,

0 = (D−A)(C −B)− (D−B)(C −A) = −AC −BD +AD +BC = (D−C)(A−B).

Thus,
−−→
CD and

−→
BA are perpendicular. We deduce that the altitude from C also passes through

D so that the three altitudes are concurrent.



(3) In this problem, f = Rπ/2,ATARπ,A. From the last page of this test (and as shown on homework
from class) TA = Rπ,A/2Rπ,(0,0). Thus, we can view f as a product of four rotations with the
sum of the angles in the rotations being 7π/2. Since a rotation by 7π/2 is the same as a rotation
by 3π/2, we deduce that f = R3π/2,B. UsingA = (1, 3), one writesRπ/2,ATARπ,A as a product
of 3 matrices and obtains

Rπ/2,ATARπ,A =

 0 1 −5
−1 0 5
0 0 1

 .

(Note that the matrix above can be used to justify f = R3π/2,B as well.) If B = (x, y), then

R3π/2,B =

 0 1 x− y
−1 0 x+ y
0 0 1

 .

Hence, x− y = −5 and x+ y = 5. Solving, we deduce x = 0 and y = 5. Thus, B = (0, 5).

Part III:
(1) The vector B − A (going in the direction of `) is parallel to the vector D − C (going in the

direction of m). Thus, B − A = k(D − C) for some constant k. Since E is the midpoint of
AC and F is the midpoint of BD, we obtain

E =
1

2
(A+ C) and F =

1

2
(B +D).

Thus,
F − E =

1

2
(B +D)− 1

2
(A+ C) =

1

2
(B − A) +

1

2
(D − C) =

k + 1

2
(D − C).

Thus,
−→
EF is a constant times

−−→
CD. This constant is non-zero since E 6= F . It follows that

←→
EF

is parallel to
←→
CD. Hence,

←→
EF is parallel to both ` and m.

(2) You do not need to know this for Test 2.

(3) Proof. By Theorem 1 (from the Information Page at the end of this test), there are real numbers
k1, k2, and k3 such that

X = (1− k1)A+ k1A
′ = (1− k2)B + k2B

′ = (1− k3)C + k3C
′.

Next, we show that k1 6= k2. Assume k1 = k2. Observe that k1 6= 0 since otherwise we would
have X = A = B, contradicting that A and B are distinct points. Also, k1 6= 1 since otherwise
we would have X = A′ = B′, contradicting that A′ and B′ are distinct points. We get that

(1− k1)A− (1− k2)B = k2B
′ − k1A

′

and that the vectors
−→
BA and

−−→
A′B′ either have the same direction or the exact opposite direction.

This contradicts that the point P exists. Hence, k1 6= k2. Thus,

1− k1

k2 − k1

A+
k2 − 1

k2 − k1

B =
k2

k2 − k1

B′ +
−k1

k2 − k1

A′.

By Theorem 1 with t = (k2 − 1)/(k2 − k1) , we see that the expression on the left above is a
point on line

←→
AB. By Theorem 1 with t = −k1/(k2 − k1), we see that the expression on the

right above is a point on line
←−→
A′B′. Therefore, we get that

P =
1− k1

k2 − k1

A+
k2 − 1

k2 − k1

B.



Hence,

(1) (k2 − k1)P = (1− k1)A+ (k2 − 1)B.

Using that
(1− k2)B − (1− k3)C = k3C

′ − k2B
′,

we similarly obtain that k2 6= k3, that

1− k2

k3 − k2

B +
k3 − 1

k3 − k2

C =
k3

k3 − k2

C ′ +
−k2

k3 − k2

B′,

and that

(2) (k3 − k2)Q = (1− k2)B + (k3 − 1)C.

From
(1− k3)C − (1− k1)A = k1A

′ − k3C
′,

we similarly obtain that either

(3) k3 = k1

or

(4)
1− k3

k1 − k3

C +
k1 − 1

k1 − k3

A =
k1

k1 − k3

A′ +
−k3

k1 − k3

C ′.

If (4) holds, then we could deduce that there is a point on both line
←→
AC and line

←−→
A′C ′, giving

a contradiction. Thus, (3) must hold. We get from (1) and (2) that

(k2 − k1)P + (k3 − k2)Q = (1− k1)A+ (k3 − 1)C

so that
(k2 − k1)(P −Q) = (1− k1)(A− C).

Observe that P 6= Q since otherwise we would have that the points A, B, and C are collinear,
which isn’t the case. Since k1 6= k2, we obtain that the lines

←→
PQ and

←→
AC are parallel, complet-

ing the proof. �



Test 2 (1993):

Part I:
(1) If A = B, then take x = 1, y = −1, and z = 0. Suppose now that A 6= B. By Theorem 1,

there is a real number t such that C = (1− t)A+ tB. Let x = 1− t, y = t, and z = −1. Then
x, y, and z are not all 0, x+ y + z = 0, and xA+ yB + zC = ~0.

(2) See Problem (2) of the 1992 test.

(3) One answer is: ∆AA′Z and ∆BB′X are perspective from point Y .

Part II:
(1) It suffices to show that G = 1

2
(C + F ). The given information implies

D =
B + C

2
, E =

A+ C

2
, F =

A+B

2
, and G =

D + E

2
.

Hence,
G =

1

2
(D + E) =

1

2

(
B + C

2
+
A+ C

2

)
=

1

2

(
C +

A+B

2

)
=

1

2
(C + F ),

as desired.

(2) From the given information, f = Rπ/2,(1,1)Rπ,(1,0)Rπ/2,(0,0). Since the sum of the angles (π/2,
π, and π/2) is 2π (an integer times 2π), we deduce that f is a translation. In other words,
f = TB. To determine B, one can compute f by multiplying matrices. However, it is probably
easier to take a point and see what f does to it (where it is mapped under f ). Consider (x, y) =
(0, 0). Rotating this point about (0, 0) by π/2 does not change it. Now, rotating the point about
(1, 0) by π moves it to (2, 0). Finally, rotating this point about (1, 1) by π/2 moves it to (2, 2).
Thus, f takes (0, 0) to (2, 2). It follows that B = (2, 2).

(3) You do not need to know this for Test 2.

(4) Recall in class that we discussed how one could obtain the pointC whereRα+β,C = Rβ,BRα,A.
The points A, B, and C form a triangle with ∠BAC = α/2 and ∠ABC = β/2. Since
α + β = π in this problem, the sum of the measures of ∠BAC and ∠ABC is π/2. Thus,
∆ABC is a right triangle with ∠ACB = π/2. Recall that we showed in class that in this
situation, C is on the circle having diameter AB. Since the center of this circle is the midpoint
of AB, C is on the circle centered at 1

2
(A+B) passing through A and B.



Test 2 (1994):

(1) See Problem 1 on the 1992 test. Note that the theorems are numbered differently.

(2) Observe that

2N −MA −QA =
A+B + C +D

2
− B + C

2
− A+D

2
= ~0.

Thus,

0 = (2N −MA −QA)(MA −QA) = 2NMA −M2
A − 2NQA +Q2

A

= −N2 + 2NMA −M2
A +N2 − 2NQA +Q2

A = −(N −MA)2 + (N −QA)2.

Thus, (N −MA)2 = (N −QA)2, and we deduce that the distance from N to MA is the same as the
distance from N to QA.

(3) (a) (3,−2)

(b) 4

(c) (4, 4) (you should be able to do this with and without matrices)

(d) (1, 4) (you should be able to do this with and without matrices)

(4) One answer is: ∆AZA′ and ∆BXB′ are perspective from point Y . There are other answers. An-
other one that was suggested is: ∆A′Y A and ∆C ′XC are perspective from point Z.

(5) Observe that a2 = (B − A)2, b2 = (C −B)2, and c2 = (C − A)2. Since a2 + b2 = c2, we obtain

(B − A)2 + (C −B)2 = (C − A)2

so that
B2 − 2AB + A2 + C2 − 2BC +B2 = C2 − 2AC + A2.

Rearranging, we obtain 2B2− 2AB− 2BC + 2AC = 0. Dividing by 2, we obtain 0 = B2−AB−
BC + AC = (A− B)(C − B). Therefore,

−→
BA and

−−→
BC are perpendicular and, hence, ∠ABC is a

right angle.

(6) You do not need to know this for Test 2.

(7) Since f is three successive rotations with the angles of these rotations summing to 8π/3, f =
R8π/3,(x,y) = Rα,D where α = 2π/3 and D = (x, y) for some numbers x and y. We need to
determine x and y. Since f(1, 1) = (5, 7), we deduce that5

7
1

 = R2π/3,(x,y)

1
1
1

 =

−1/2 −
√

3/2 (3x+
√

3y)/2√
3/2 −1/2 (−

√
3x+ 3y)/2

0 0 1

1
1
1


Thus, 10 = −1−

√
3 + 3x+

√
3y and 14 =

√
3− 1−

√
3x+ 3y.

Rewriting these, we obtain
3x+

√
3y = 11 +

√
3 and

√
3x− 3y = −15 +

√
3.

Multiplying the first of these by
√

3 and adding the result to the second, we deduce 4
√

3x = 12
√

3−
12 so that x = 3−

√
3. Substituting, we obtain (after a little work) y = 4 + (2

√
3/3).



(8) Proof: Since
←→
AA′,

←−→
BB′, and

←−→
CC ′ are parallel, there are real numbers k1 and k2 such that

A′ − A = k1(B
′ −B) = k2(C

′ − C).

We get that
A− k1B = A′ − k1B

′.

We first explain why k1 6= 1. Assume k1 = 1. Then A − B = A′ − B′ so that
←→
AB and

←−→
A′B′ are

parallel. This contradicts that P exists. Therefore, k1 6= 1. Hence,(
1

1− k1

)
A+

(
−k1

1− k1

)
B =

(
1

1− k1

)
A′ +

(
−k1

1− k1

)
B′.

By Theorem 1 (from the last page of this exam) with t = −k1/(1− k1), we see that the expression
on the left above is a point on line

←→
AB and that the expression on the right above is a point on line←−→

A′B′. Therefore, we get that

(1) (1− k1)P = A− k1B.

Similarly, from k1B − k2C = k1B
′ − k2C

′, we deduce that

(2) (k1 − k2)Q = k1B − k2C.

Also, from k2C − A = k2C
′ − A′, we deduce that

(3) (k2 − 1)R = k2C − A.

Therefore, from (1), (2), and (3),

(1− k1)P + (k1 − k2)Q+ (k2 − 1)R =
−→
0 .

The result follows from Theorem 3 (on the last page of this test).



Test 2 (1995):

(1) See Problem 1 on the 1993 test. Note that the theorems are numbered differently.

(2) The square of the distance from N to MA is (N −MA)2 and the square of the distance from N to
MC is (N −MC)2. It therefore suffices to show that (N −MA)2 = (N −MC)2. Since

←→
BD and

←→
CA

are perpendicular, (D −B)(A− C) = 0. We use that

D −B = (A+B + C +D)− (B + C)− (A+B)

= 4N − 2MA − 2MC = 2
(
(N −MA) + (N −MC)

)
.

and A− C = (A+B)− (B + C) = 2MC − 2MA = 2
(
(N −MA)− (N −MC)

)
Since (D −B)(A− C) = 0, we deduce

0 =
(
(N −MA) + (N −MC)

)(
(N −MA)− (N −MC)

)
= (N −MA)2 − (N −MC)2.

Hence, (N −MA)2 = (N −MC)2.

(3) (a) (−2, 0)

(b) 1

(c) (12, 6)

(4) Observe that a2 = (B − A)2, b2 = (C −B)2, and c2 = (C − A)2. Since a2 + b2 = c2, we obtain

(B − A)2 + (C −B)2 = (C − A)2

so that
B2 − 2AB + A2 + C2 − 2BC +B2 = C2 − 2AC + A2.

Rearranging, we obtain 2B2− 2AB− 2BC + 2AC = 0. Dividing by 2, we obtain 0 = B2−AB−
BC + AC = (A− B)(C − B). Therefore,

−→
BA and

−−→
BC are perpendicular and, hence, ∠ABC is a

right angle.

(5) One answer is: ∆TB′B and ∆SA′A are perspective from point R.

(6) Let D be the midpoint of BC. Then D = (B + C)/2. Since the distance from A to B is equal to
the distance from A to C, we obtain (A−B)2 = (A− C)2. Thus,

0 = (A−B)2 − (A− C)2 = (2A−B − C)(C − A)

= 2

(
A− B + C

2

)
(C − A) = 2(A−D)(C − A)

(where the second equality follows by considering the factorization of the difference of two squares).
It follows that

−−→
DA and

−→
AC are prependicular. In other words, the line passing through A and the

midpoint of BC is perpendicular to line
←→
BC.



(7) Proof: Since
←→
AA′,

←−→
BB′, and

←−→
CC ′ are parallel, there are real numbers k1 and k2 such that

A′ − A = k1(B
′ −B) = k2(C

′ − C).

We get that
A− k1B = A′ − k1B

′.

We first explain why k1 6= 1. Assume k1 = 1. Then A − B = A′ − B′ so that
←→
AB and

←−→
A′B′ are

parallel. This contradicts that P exists. Therefore, k1 6= 1. Hence,(
1

1− k1

)
A+

(
−k1

1− k1

)
B =

(
1

1− k1

)
A′ +

(
−k1

1− k1

)
B′.

By Theorem 1 (from the last page of this exam) with t = −k1/(1− k1), we see that the expression
on the left above is a point on line

←→
AB and that the expression on the right above is a point on line←−→

A′B′. Therefore, we get that

(1) (1− k1)P = A− k1B.

Similarly, from k1B − k2C = k1B
′ − k2C

′, we deduce that

(2) (k1 − k2)Q = k1B − k2C.

Using that
A− k2C = A′ − k2C

′

and that
←→
AC and

←−→
A′C ′ are parallel (so R is a point at “infinity”), we obtain

(3) k2 = 1.

From (1) and (2), we obtain

(4) (1− k1)P + (k1 − k2)Q = A− k2C.

Using (3), we can rewrite (4) in the form

(1− k1)× (P −Q) = A− C.

Recall that k1 6= 1. Therefore, the line
←→
AC is parallel to the line

←→
PQ.


