MATH 532/736I, LECTURE 4

- 1. Finish Previous Notes
- 2. Homework: Assign further problems from Homework 1. Quiz: 01/27/09, Tuesday
- 3. Finite Projective Planes (Given a positive integer *n* called the order.)

Axiom P1: There exist at least 4 points no 3 of which are collinear.

Axiom P2: There exists at least 1 line with exactly n + 1 (distinct) points on it.

Axiom P3: Given 2 distinct points, there is exactly 1 line that they both lie on.

Axiom P4: Given 2 distinct lines, there is at least 1 point on both of them.

4. Prove the duals of the above axioms in the following order.

Dual of Axiom P4: Given 2 distinct points, there exists at least 1 line passing through both of them.

Dual of Axiom P3: Given 2 distinct lines, there exists exactly 1 point on both of them.

Dual of Axiom P1: There exist at least 4 distinct lines, no 3 of which are concurrent.

Dual of Axiom P2: There exists at least 1 point with exactly n + 1 lines passing through it.

Comments: Give handout of the proof of the dual of Axiom P1 before proving it. Before the proof of the dual of Axiom P2 mention that the following will be shown:

Lemma. If ℓ is a line with exactly n + 1 points on it (in a finite projective plane of order n) and A is a point not on ℓ , then there exist exactly n + 1 lines passing through A.

5. Main Steps for Lemma:

- Let P_1, \ldots, P_{n+1} be the points on ℓ .
- Let ℓ_i be the line through A and P_i (use Axiom P3).
- No ℓ_j is ℓ (A is not on ℓ).
- The ℓ_i are distinct (use Axiom P3); hence, at least n + 1 lines go thru A.
- Let ℓ' be a line through A.
- Then some P_j is on ℓ' (use Axiom P4).
- Deduce $\ell' = \ell_j$ (by Axiom P3); so no more than n + 1 lines go thru A.

6. Main Steps for Dual of P2:

- Let ℓ be a line with exactly n + 1 points on it (use Axiom P1).
- Let A be a pont not on ℓ (use Axiom P1).
- Apply the lemma.