Math 241: Quiz 8

Show ALL Work

Name

Solutions

1. Determine the absolute maximum and absolute minimum value of

$$f(x,y) = 3x^2 + 2y^2 - 3x - 4$$

where (x, y) varies over the points satisfying $x^2 + y^2 \le 4$. Furthermore, indicate ALL points (x, y) satisfying $x^2 + y^2 \le 4$ where these values occur.

Solution. For (x, y) satisfying $x^2 + y^2 < 4$, we want

$$f_x = 6x - 3 = 0$$
 AND $f_y = 4y = 0$.

So we have only one point (1/2, 0) to consider here. We note that f(1/2, 0) = -19/4. For (x, y) satisfying $x^2 + y^2 = 4$, we have $y^2 = 4 - x^2$ and $-2 \le x \le 2$, so f(x, y) = g(x) where

$$g(x) = 3x^{2} + 2(4 - x^{2}) - 3x - 4 = x^{2} - 3x + 4.$$

So we want to maximize and minimize g(x) where $-2 \le x \le 2$ (a first year Calculus problem). Since g'(x) = 2x - 3 = 0 precisely when x = 3/2 and $3/2 \in [-2, 2]$, we only need to consider the points where x = -2, 3/2 and 2 (note endpoints must be considered). Since g(-2) = 14, g(2) = 2 and g(3/2) = 7/4, the maximum value of f(x, y) on the circle $x^2 + y^2 = 4$ is 14 and the minimum is 7/4. For x = -2 and $x^2 + y^2 = 4$, we have y = 0; and for x = 3/2 and $x^2 + y^2 = 4$, we have $y = \pm \sqrt{7}/2$. Recalling f(1/2, 0) = -19/4, we get the answers above and the answers below (on the next page). For those of you who are more organized, you might want to make a table similar to the following as you go along.

Location	x	y	Crit. Pts.	Value of f	Conclusion
inside	1/2	0	(1/2,0)	-19/4	abs. min.
boundary	3/2	$\pm\sqrt{7}/2$	$(3/2,\pm\sqrt{7}/2)$	7/4	abs. min. on boundary
boundary	-2	0	(-2,0)	14	abs. max. (on boundary)
boundary	2	0	(2,0)	2	nothing worth noting

2. For this problem, you should only have to use the work you already did above. Determine the absolute maximum value and the absolute minimum value of

$$f(x,y) = 3x^2 + 2y^2 - 3x - 4$$

where (x, y) varies over the points satisfying $x^2 + y^2 = 4$. Furthermore, indicate ALL points (x, y) satisfying $x^2 + y^2 = 4$ where these values occur.

